
2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

EnDAS: Efficient Encrypted Data Search as a
Mobile Cloud Service

Ruhui Ma, Jian Li, Haibing Guan, Mingyuan Xia and Xue Liu

Abstract—Document storage in the cloud infrastructure is rapidly gaining popularity throughout the world. However, it poses risks
to consumers unless the data is encrypted for security. Encrypted data should be effectively searchable and retrievable without any
privacy leaks, particularly for the mobile client. Although recent research has solved many security issues, the architecture cannot be
applied on mobile devices directly under the mobile cloud environment. This is due to the challenges imposed by wireless networks,
such as latency sensitivity, poor connectivity, and low transmission rates. This leads to a long search time and extra network traffic
costs when using traditional search schemes. This study addresses these issues by proposing an efficient Encrypted DAta Search
(EnDAS) scheme as a mobile cloud service. This innovative scheme uses a lightweight trapdoor (encrypted keyword) compression
method, which optimizes the data communication process by reducing the trapdoor’s size for traffic efficiency. In this study, we also
propose two optimization methods for document search, called the Trapdoor Mapping Table (TMT) module and Ranked Serial Binary
Search (RSBS) algorithm, to speed the search time. Results show that EnDAS reduces search time by 34% to 47% as well as network
traffic by 17% to 41%.

Index Terms—Mapping Table, Compression, Ranking Search, Encrypted Search, Mobile Cloud.

F

1 INTRODUCTION

S INCE cloud computing can support elastic services
and provide an economical use of storage and com-

putation resources, it is rapidly gaining popularity. With
powerful cloud services, many data providers can popu-
late their data in clouds instead of directly serving users.
The cloud also allows providers to delegate important
tasks such as document searches. To protect data secu-
rity, the documents and their indexes are usually en-
crypted before outsourcing to the cloud for searches [1],
[2]. When users need to query certain documents, they
first send keywords to the original data provider. The
provider then generates encrypted keywords (also called
trapdoors) and returns the trapdoors to the user. The
user then sends these trapdoors to the cloud. Upon re-
ceiving the trapdoors, the Cloud uses a special search al-
gorithm to select a set of desired documents (encrypted)
based on the encrypted indexes and given trapdoors.
Finally, the user receives these encrypted search results
and uses the private key from the provider to decrypt
documents. This architecture, as depicted in Figure 1,
protects data security while entitling the providers to use
both the computation and storage power of the Cloud
for document searches. Due to these advantages, this
architecture has already been well-adopted in privacy-
preserving search systems [2], [3], [4], [5], [6].

• R. Ma et al are with Shanghai Key Laboratory of Scalable Computing and
Systems, Shanghai Jiao Tong University, Shanghai, China, 200240.
E-mail: ruhuima, li-jian, hbguan@sjtu.edu.cn

• X. Liu and M. Xia are with the School of Computer Science, McGill
University, Montreal, Canada, H3A 0E9.
E-mail: xueliu@cs.mcgill.ca, mingyuan.xia@mail.mcgill.ca

6. Keywords
5. Authentication

7. Trapdoors

10. Result

Index

3. Encrypted Documents

4. Encrypted Index

9. Search Request

Figure 1. Traditional Encrypted Search System over Cloud

Mobile devices (e.g. smartphones and tablets) were
estimated to surpass two billion growth (0.3 billions
for PCs) in the year 2014, which dominates the overall
shipment of consumer electronics devices [7]. Nowa-
days, users heavily utilize mobile devices to request
document search services. In general, mobile devices
connect to the Internet mainly via wireless networks
(WiFi/3G/4G/LTE), which incurs some challenges as
compared to traditional wired networks. These chal-
lenges include: 1) Latency sensitivity: these wireless
networks incur longer network latency, which can slow
down a single search request if the search request re-
quires many network round trips. For example, in the
traditional design shown in Figure 1, a single search

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

requires three round trips and results in notable la-
tency for wireless communication. 2) Poor connectivity:
Mobile devices are normally incapable of maintaining
a long-running connection with the Cloud, mostly for
energy-saving purposes. Multiple search requests could
incur numerous re-connection operations and extra au-
thentication costs. 3) Low network transmission rate:
Mobile devices are normally equipped with low-power
transmission components, bringing slower transmission
rates.

For example, the traditional system shown in Figure
1 requires two network round trips between the user
and the provider (for authentication and trapdoor gener-
ation) and one between the user and the cloud (for docu-
ment retrieval). Three round trips simply impose notable
search delay and excessive network traffic, which could
be costly for a mobile device.

According to our measurement, a search request in the
traditional system could produce trapdoors with a size
up to 1.2MB [8]. When performing search requests, the
trapdoor has to be sent twice (step 7 and 8). In such case,
privacy-preserving searches could lead to longer search
delay and more bandwidth consumption, which could
not be affordable to mobile users.

This study focuses on traffic and search time inef-
ficiency issues over the mobile cloud. We present an
efficient Encrypted DAta Search (EnDAS) scheme as a
mobile cloud service to tackle these problems. Our sys-
tem supports multi-keyword privacy-preserving search
and greatly reduces network traffic and search delays.
For network traffic, EnDAS pre-computes trapdoors for
common search keywords and thus avoids one network
round trip for re-computing trapdoor per request. We
further propose several mechanisms to compress trap-
doors and demonstrate that our pre-computed trapdoor
table has a size of 0.31MB and could be effectively
stored and loaded in mobile device memory. In terms
of search time, EnDAS retrofits the search algorithm in
the cloud. Based on the binary tree principle, we present
Ranked Serial Binary Search (RSBS) algorithm, which
could reduce query time in the cloud. Our contributions
can be summarized as follows:

1) We examined the traditional encrypted search ar-
chitecture in terms of network traffic and search
time. Results show that the conventional approach
is not applicable in mobile-cloud environments.

2) We developed EnDAS to address these challenges.
Our architecture includes a trapdoor compression
method to reduce traffic costs, as well as a Trapdoor
Mapping Table (TMT) module and RSBS algorithm
to reduce search time.

3) We evaluated the efficiency of EnDAS in network
traffic and search time. We demonstrated that with
EnDAS architecture, we can reduce network traffic
by 17% to 41% and search time by 34% to 47%.

The remainder of this article is organized as follows:
Section 2 describes the traditional encrypted search sys-
tem architecture and problems. Section 3 describes the

detailed design of the EnDAS system, as well as analyze
its network traffic and search time efficiency. Section 4
evaluates the systems, and related work is covered in
Section 5. Section 6 provides conclusions and implica-
tions.

2 PROBLEM STATEMENT

In this section, we briefly introduce existing privacy-
preserving search architectures and outline their short-
comings, both in terms of search delay and network
traffic.

2.1 Traditional Encrypted Search System

As shown in Figure 1, the traditional encrypted search
system over the cloud is composed of three different par-
ticipants, Provider, Cloud and User, which are defined
below.

The Provider possesses a set of documents and their
indexes. It intends to outsource these to the cloud and let
users contact the cloud for the search service. The Cloud
is a commercial organization that provides computation
and storage resources in the form of virtual machines,
commonly known as “cloud” services. The User is some-
one who submits keywords to search documents that
contain these keywords. In our scenario, users would
use mobile device such as smartphones and tablets to
submit search requests.

Figure 1 details the execution flow of a traditional
encrypted search over the cloud, including three main
flows: documents and indexes uploading process (steps
1 to 4), trapdoor generation process (steps 5 to 8) and
document retrieval process (steps 9 to 11). The weight
of lines indicates the amount of data being transferred.

Documents and indexes uploading process: First, the
provider in charge of this flow stems all words in these
documents to be stored in the cloud and retains these
terms. Then each term is encrypted and considered as
one index’s keyword. The encryption algorithm can em-
ploy the classic symmetric-key cryptography algorithm
such as the Advanced Encryption Standard [9], [10].
The frequency of each term in the document set is
counted and then written into the corresponding entry of
the document index. Finally, the provider encrypts this
index and outsources it to the cloud with the encrypted
documents. In essence, this index is a word frequency
table encrypted by the computable encryption algorithm.
Some studies have utilized the Fast Accumulated Hash
(FAH) algorithm to achieve these purposes [11], [12],
[13].

Trapdoor generation process: To perform a search
request, the user first authenticates with the provider.
During authentication, the provide would send its secret
key to the user to decrypt the documents stored in cloud.

Once authenticated, the user would send the search
keywords to the provider. The provider then computes
trapdoors, commonly with FAH algorithms and replies

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 3

back. In such case, two round trips are required (authen-
tication and trapdoor generation) for a user to obtain the
trapdoor for the search keywords.

Document retrieval process: In this process, the user
sends the noised trapdoor to the cloud. The cloud then
removes noise in the trapdoor and searches the indexes
with a search algorithm. When documents are found, the
cloud ranks them according to each document’s score.
Then the top-k relevant documents are chosen and sent
to the user. Finally, they are decrypted and recovered
by the user. In general, the Ranked Serial Search (RSS)
algorithm [14], [15] is chosen as the search algorithm.

2.2 Network Traffic Inefficiency Problem
As noticed in the trapdoor generation process, the trap-
door is traditionally generated by the provider to pro-
vide data security. However, in such case, the trapdoors
would need to be transmitted twice per request (between
the provider and the user plus between the user and
cloud). Figure 1 depicts the search flow with two net-
work communication round trips for traditional systems,
including trapdoor generation process and document
retrieval process. Here we do not care for the authenti-
cation process as well as transmitting target documents
from the cloud to the user. So the total network traffic
of the traditional system depends on network traffic cost
when generating trapdoors.

Then we analyze the network traffic cost of the tra-
ditional system with two network round trips, which is
shown in Figure 2.

ProviderUser

Keywords
(30 Bytes)

Trapdoor
generation

Noise

Trapdoors (1.2 MB)

Cloud

Trapdoors
(1.2 MB)

Figure 2. Trapdoor Generation in the Traditional System

From Figure 2, we calculate the network traffic cost by
Equation (1).

Ntrr = 2× Strap + Skey

= 2× 1.2MB + 30Bytes

≈ 2.4MB

(1)

, where Ntrr represents the total network traffic cost,
Strap is as the size of the trapdoor, and Skey is as the
size of the keyword.

According to Equation (1), only one search request
costs so high network traffic that this two-round-trip
network communication is inefficient for users in the
mobile cloud environment.

2.3 Search Time Inefficiency Problem
The search delay mainly composes the trapdoor gener-
ation time and document search time. Trapdoor genera-
tion time faces challenges in mobile wireless networks:

high communication latency, poor connectivity and low
network transmission rate. According to Figure 2, we
could calculate the trapdoor generation time by Equation
(2). The traditional system requires users to transmit the
trapdoor twice (up to 1.2MB a time), which could easily
reach 300ms.

Ttrr = 2× Tnet + Tgen + Tnoi (2)

,where Ttrr represents the total time delay, Tnet is as the
time delay of one round trip, Tgen is as the time delay
of trapdoor generation, and Tnoi is as the time delay of
adding noise in the trapdoor.

Also according to our measurement, the trapdoor
generation (steps 5 to 8 in Figure 1) time accounts for
59.9% of the total search delay.

On the other hand, document retrieval time depends
on the search algorithm in the cloud. The RSS algorithm
is often used to retrieve documents in the cloud (steps
9 and 10 in Figure 1), which ranks the documents
according to relevance scores. However, it must undergo
a 3-level iteration to obtain related documents, and its
time complexity is about O(n3). This search process is
significantly inefficient, leading to a long retrieval time
in the mobile cloud that is not feasible for the user.
This work addresses these challenges with an innovative,
efficient encrypted search scheme that can be used over
mobile cloud, as described in Sections 3.

3 ENDAS DESIGN

This section introduces the design of the EnDAS system
and retrofitted trapdoor generation process in EnDAS.
Compared the EnDAS system (Figure 3) with traditional
system (Figure 1), the main difference is that (1) network
traffic is reduced by a single round trip information
exchange and the trapdoor compression method; and
(2) the search time is reduced by the RSBS algorithm
and the TMT module; and (3) the computing burden for
generating trapdoors is also offloaded by the TMT mod-
ule. Aforementioned performance benefits are enabled
by a retrofitted trapdoor generation process (Section 3.2)
and a retrofitted search algorithm (Section 3.3).

3.1 Architecture of the EnDAS System
Figure 3 shows the search flow in EnDAS system. The
trapdoor generation process and the cloud search algo-
rithm are retrofitted to reduce search delay and network
traffic.

For trapdoor generation, EnDAS stores a pre-
computed Trapdoor Mapping Table (TMT) in mobile
devices, which maps common English words to corre-
sponding trapdoors. When the mobile device initiates
a search request, the trapdoor is looked up from the
table instead of being requested from the provider.
This optimization saves one network round trip for the
trapdoor generation. Furthermore, EnDAS also provides

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 4

5. Authentication

9. Result

Index

3. Encrypted Documents

4. Encrypted Index

6. Trapdoors
Optimization

Trapdoor Mapping Table (pre-computed)

Index Value
Keyword 1 Trapdoor 1

…… ……
Keyword n Trapdoor n

8. Search Request

Figure 3. EnDAS system over mobile cloud

new algorithms to optimize and compress trapdoors to
reduce network traffic to transmit trapdoors. Section
3.2 will elaborate the details of the EnDAS trapdoor
generation process.

For the search algorithm, EnDAS proposes to lever-
age a binary tree structure to reduce the lookup costs
and thus improve the search responsiveness. Section 3.3
would further explain the details.

3.2 Retrofitted Trapdoor Generation Process
The retrofitted trapdoor generation process is described
in this subsection, as shown in Figure 5 and Algorithm
1. This process includes the trapdoor mapping table and
the trapdoor compression algorithm.

3.2.1 Overview
With retrofitted trapdoor generation process, it is not
necessary for an authenticated user calculate pure trap-
doors (which will incur heavy computation). After a
keyword is stemmed, an user can just query the trapdoor
mapping table for the trapdoors, as shown in Algo-
rithm 1. Since the trapdoor mapping table stores the
information needed for mapping and search, the heavy
computation for generating trapdoors is not needed to be
conducted online. This not only avoids the recalculation
if the term is found, but also reduces the number of
necessary round trips from two to one.

However, it is inevitable that the trapdoors of some
keywords have not been stored in the trapdoor mapping
table in advance. In this case, the keyword is encrypted
by the user(instead of the provider (line 1 to 6 in Al-
gorithm 1). Then the newly retrieved or generated pure
trapdoor is added with some noises from a noise set Θ,
to prevent the cloud from examining the same trapdoors,
shown in line 7 of Algorithm 1.

Note that the size of the trapdoor and the noise can be
too large to bring too much burden for the transmission.

To address this issue, as shown in line 8 in Algorithm 1,
a lightweight trapdoor compression method is used to
extract each trapdoors characteristic bits, record as well
as accumulate location of each characteristic bit in order,
and transmit the compressed trapdoor to the cloud. Since
these characteristic bits only occupy a small proportion
in this trapdoor, the compressed trapdoor will lead
to additional reduced traffic cost for transmitting the
trapdoors to the cloud.

We will elaborate the two aforementioned components
in the following.

3.2.2 Trapdoor Mapping Table Module

We found that there was a long calculation time from
building the trapdoor on the provider side. In a tradi-
tional system, the calculation of generating a trapdoor
of a given keyword is constituted by term stemming,
encryption and adding noise by the provider. Among
these three steps, it is shown in Figure 4 that the time of
encryption stands for a significant proportion of the the
total trapdoor calculation time.

Figure 4 displays three columns, denoting the total
calculation time for generating trapdoors for one key-
word, two keywords and three keywords respectively.
As shown in Figure 4, the encryption time occupies
nearly 85% of the total calculation time. This is because
that the encryption operation requires more computing
resources than others, as it accumulates all terms to-
gether to generate a hash code.

To reduce trapdoor construction time, our method
ships the encryption process from the online approach
to offline. Furthermore, the trapdoor generation process
utilizes a Trapdoor Mapping Table (TMT), which stores a

Algorithm 1 Trapdoor Generation Process
Input:

Keyword: K
Hash function in FAH algorithm: H()
Mapping function in FAH algorithm: G()
Noise set: Θ = {ε1, ε2, . . . εp}

Output:
Index: Compressed trapdoor τ̄t

′

1: Extract the term t from K.
2: if the term t hits in the TMT module then
3: Obtain its pure trapdoor without any noise.
4: else
5: Hash it by H() and get its l-bit hash code τt = H(t);

Map τt to τ̄t = {0, 1}r by G(), which contains r bits
6: end if
7: Choose q noises from the noise set Θ to build a subset
ε = {ε1, ε2, . . . εq}, and accumulate it with τ̄t to get τ̄t

∧
ε.

8: Calculate the location of each characteristic bit 0 in τ̄t
∧
ε

by utilizing an m-bit {0, 1} codes to record this loca-
tion (r = 2m), accumulate values of locations in order
{0, 1}m

∧
{0, 1}m

∧
. . . {0, 1}m︸ ︷︷ ︸

f

, get a compressed trap-

door τ̄t
′

= {0, 1}f×m (f as the number of characteristic
bits).

9: return τ̄t
′
.

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 5

large amount of frequently-used trapdoors (since an En-
glish vocabulary of just 3,000 words provides coverage
for around 95% of common texts [16], here we assume a
proper size of keywords is about 3,000 words) calculated
offline. The key for this trapdoor mapping table is a term
from stemmed keywords, while its value corresponds to
encrypted terms (a pure trapdoor without any noise).

Next we analyzed the availability of the TMT module.
According to our measurement, we found that in 20,000
trapdoors, the size of more than 80% of trapdoors ranges
from 20 to 60 bytes. That is, encrypted keywords have
a small size. So we selected 5,893 different words (in-
cluding 3,000 common words and 2,893 rare/uncommon
words [17]) as keywords to be encrypted, and then
stored them in TMT module. We achieve that the ac-
tual size of TMT was about 0.31 MB, according to our
measurement. Although some rare words are not in the
TMT module, users rarely search documents with them,
and therefore we can fully ignore these words.

Figure 3 indicates that this TMT requires only one
transfer to the user, while its size is smaller than the size
of one noised trapdoor (0.4 MB) from the provider to the
user (step 7 in Figure 1). That is, the TMT module saves
not only traffic but also search time. TMT module does
not require the provider to compute trapdoors through
expensive communication between the provider and the
user, while it only requires the user to look up trapdoors,
avoiding re-computing trapdoors. It reduces network
round trips for trapdoor generation from two to one,
which is shown in Figure 3.

We analyze the performance of EnDAS in search time
when generating trapdoors. Utilizing TMT module, En-
DAS has only one network round trip used to search
target documents, which is shown in Figure 3. The
total search delay of EnDAS when generating can be
calculated by Equation (3)

Tsrr = 1× Tnet + Tlook + Tnoi + Tcomp (3)

,where Tsrr represents the total time delay, Tnet is as the
time delay of one round trip, Tgen is as the time delay
of trapdoor lookup, Tnoi is as the time delay of adding
noise in the trapdoor, and Tcomp is as the time delay of
compressing noised trapdoor.

Comparing Equation (3) with Equation (2), we find
that Tsrr < Ttrr. This is because EnDAS is only required
to look up, noise and compress trapdoors, rather than
encrypting trapdoors. In essence, the noise method is
that accumulating noises chosen from the noise set after
each trapdoor in order would consume a few time. On
the other hand, the trapdoor compression method also
causes a few time, and the reason will be elaborated in
Section 3.2.3. Looking up trapdoors in the TMT module
spends so few computing resources that we can fully
ignore it. According to our measurement, encrypting
trapdoors in the traditional system costs much longer
calculation time (85% of total time for trapdoor gener-
ation) than other operations on trapdoors (e.g. noise).

This is because the encryption operation requires more
computing resources than others since it accumulates
all terms together to achieve a hash code. And this
conclusion is shown in Figure 4, which displays three
columns, denoting a single keyword, two keywords and
three keywords respectively.

84.52%

85.92%

85.48%

0

500

1000

1500

2000

2500

3000

1 2 3

T
im

e
(m

s)

Keywords number

Other time Encryption time

Figure 4. Trapdoor calculation time

3.2.3 Trapdoor Compression

We now introduce the lightweight trapdoor compression
method. The key idea behind this trapdoor compression
method is that we utilize the location of each trapdoor’s
characteristic bit to represent this trapdoor, since charac-
teristic bit 0 can show all the features of the trapdoor and
also occupy a much smaller proportion compared with
non-characteristic bit 1. We first analyze the availability
and then provide the detailed design for the compression
method.

After the trapdoor is constructed, we get an r-bit
trapdoor without any noise, in which the proportion
of characteristic bits is small. The expectation of the
characteristic bit 0 in one pure trapdoor is r

2d
, as

described in Section 3.3.3.
Notes that we see the noises in set Θ consist of n

various noises (Section 3.3.4), and each noise is also a r-
bit hash code (pure trapdoor). However, each term is not
yet part of the document set before encrypted, thus these
noises differs from any trapdoor. Here we select q noises
in the noise set Θ (q ≤ n) so that a sub-noise set can be
achieved as ε = {ε1, ε2 . . . εq}. They are used to optimize
each trapdoor, and each noise can be represented as
εi = {0, 1}r, where r represents the number of bits in
each noise.

In the worst case of ε = Θ, we choose all the noises
(p various noises) to noise each trapdoor. So for an r-
bit pure trapdoor, we get a (p+1)r-bit nosied trapdoor.
If each noise has no characteristic bit, the number of
characteristic bits in this trapdoor are also r

2d
in the

best scenario. However, in the worst case scenario, if
each noise has r characteristic bits, the number of char-
acteristic bits in this trapdoor is (p+1)×r

2d
. Furthermore,

in the worst case, noises seriously impact each term’s
characteristic bit. Therefore, we estimate that the ratio of

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 6

the numbers of 0 and 1 is almost
(p+1)×r

2d

r− (p+1)×r

2d

= (p+1)
2d−p−1

.

From this result, we can deduce that the number of
0 will be much less than the number of 1. This is a
very important attribute. This analysis demonstrates that
adding noise into the trapdoor still ensures a small
proportion for characteristic bit 0.

Accordingly, we present a lightweight trapdoor com-
pression method by accumulating locations of term’s
characteristic bits to alleviate much of the burden of
the transmission process, as shown in line 8 of Algo-
rithm1. Here we elaborate the compression method in
details. After each trapdoor is noised, it is defined as
{0, 1}(k+1)r, k ≤ n, where n is the number of noises in
the noise set Θ. Now we define r as 2m, so that the
location of each characteristic bit in the trapdoor can be
represented as an m-bit code, while all non-characteristic
bits are ignored. We easily get each characteristic bit’s
location value and then accumulate them in order. This
new accumulated code created by the locations of char-
acteristic bits is considered as the compressed trapdoor,
which is finally sent to the cloud.

In fact, the trapdoor compression method brings not
only a few time delay but also much more network traffic
reduction. This is because the trapdoor compression
method is to extract all the characteristic bits 0, record
their location values and accumulate these location val-
ues. Since all the characteristic bits only occupy a much
smaller portion in the trapdoor, the compression pro-
cess for characteristic bits 0 would cost less computing
resources compared with encrypting the keyword. The
process of encrypting the keyword is that all the charac-
teristic bits 0 and non-characteristic bits 1 are required
to be calculated twice, including dividing and mapping.
And this keyword encryption process is the same as the
process of term encryption when encrypting index in the
provider side, as described in Section 3.3.3. So we easily
achieve Tlook + Tcomp < Tgen.

User

Keywords
(30 Bytes)

Lookup Noise Compress

Cloud

Trapdoors
(0.051MB)

Figure 5. Trapdoor Generation in EnDAS System

Then we elaborate on the network traffic of EnDAS
when generating trapdoors, as shown in Figure 5. In
the EnDAS system, the network traffic is reduced by the
trapdoor compression method and single network round
trip, compared with the traditional system. We easily
obtain that the total network traffic Nsrr is only 0.051MB,
which is much smaller than the total network traffic
of the traditional system Ntrr (2.4MB) calculated by
Equation (1). This is because the compressed trapdoor is
only composed by a few location values of characteristic
bits 0, the size of which is smaller than the size of the
whole trapdoor.

3.3 Efficient Search Algorithm

The efficient search algorithm proposed by EnDAS relies
on a binary search tree structure to accelerate indexing.
In the section, we will first introduce the conventional
privacy-preserving index construction procedures, in-
cluding index construction (Section 3.3.1), index slic-
ing (Section 3.3.2) as well as index encryption (Section
3.3.3), and then elaborate our binary search tree con-
struction (Section 3.3.4) to accelerate index matching.
Finally we will present our RSBS algorithm (Section
3.3.5) which leverages this data structure to perform
privacy-preserving searches more efficiently.

3.3.1 Document Index Construction
The cloud uses the indexes provided by the provider to
quickly search documents. The provider is responsible
for constructing document indexes and sends to the
cloud. In general, two important matrices are commonly
used [18] to generated the index of documents. The
Term-Frequency (TF) matrix denotes the frequency of
each term in documents. The Inverted Document Fre-
quency (IDF) matrix depicts the significance of rare
terms that are used to distinguish documents. The multi-
plication of these two matrices, which produces the score
matrix A. The matrix A will be encrypted and outsourced
to the cloud, rather than traditional TF matrix and IDF
matrix. This avoids multiplication operation (TF×IDF)
when searching documents score in the cloud. Suppose
we have N documents and T terms, matrix A is a N-by-
T matrix. Each element RSt,c stands for the relevance
score of term t in document c, for a particular document
c, c ∈ {1, . . . N} and a term t, t ∈ {1, . . . , T}. We use
the column vectors Ic of matrix A as the index for a
particular document. These notations have the following
relationships:

A = (I1, I2, . . . , IN) =


RS1,1 RS1,2 . . . RS1,N

RS2,1 RS2,2 . . . RS2,N

...
...

. . .
...

RST,1 RST,2 . . . RST,N


(4)

We compute the score for a particular document c as
the sum of all elements within its index Ic, which is

Scorec =

T∑
t=1

RSt,c (5)

3.3.2 Index Slicing
After the plain-text document indexes are produced, the
provider then divides each index into s slices s (s ≤ T)
according to the score value. We elaborate this process
as follows.

According to score value, we divide the index Ic into s
slices, and each slice has a normalized score value. And
terms in one slice, such as the slice Slicec, are given a
same score value as the normalized score of this slice.

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 7

According to this principle, we define the slice Slicec as
the jth slice of the index Ic, so its score scope Scopej,c =

[
max(RSt,c)−min(RSt,c)

s × (j − 1),
max(RSt,c)−min(RSt,c)

s × j]
(t ∈ {1, . . . , T}, c ∈ {1, . . . N}, 1 ≤ j ≤ s), where
max(RSt,c) denotes the maximum score of the matrix
A, min(RSt,c) denotes the minimum score of the matrix
A.

Then we select a score value w (w ∈ Scope1,c) as the
normalized score of the first slice in the index Ic, so we
define the score of the slice Slicec as Scorej,c equals
wj,wj ∈ Scopej,c. Note that we do not care for the
specific score value, and only focus on slice sort, such as
Scorej−1,c ≤ Scorej,c ≤ Scorej+1,c. In fact, all terms in
the slice Slicec are given the same score. That is, the score
of each term depends on the location of corresponding
slice. So we achieve the final score of the document c
calculated by Equation (6).

Scorec = w × j, w ∈ Scope1,c, 1 ≤ j ≤ s (6)

where w denotes a random score value, s denotes the
number of slices in the index Ic, j denotes the location
of the slice and Scope1,c denotes the score of the first
slice in the index Ic.

3.3.3 Index Encryption
The provider then encrypts each index with a given
FAH algorithm by encrypting each index’s slices, before
sending them to the cloud. We base our scheme on
previous privacy-preserving searching systems [6], [11],
[15].

Here the FAH encryption algorithm for document
indexes is employed in previous literature [6]. Utilizing
this FAH algorithm, we encrypt slices of each index. The
detailed encryption process for one slice Slicec of the
index Ic is that encrypting l-bit term t in Slicec is used
by the hash function H(), and mapping l-bit encrypted
term τt into r-bit optimized term τ̄t is by the mapping
function G(), where l = d × r; and then accumulating
all the r-bit optimized terms together. Finally we get
the encrypted slice Slice

′

c. In this way, we can encrypt
the index Ic by accumulating all the slices (s slices),
and obtain the encrypted index I

′

c equals accumulating
all the optimized terms in this document, shown as
I
′

c = τ̄1τ̄2 . . . τ̄T .
Note that the number of each term’s characteristic bit

0 is much less than that of non-characteristic bit 1, and
the number ratio of value 0 and 1 is

1

2d

1− 1

2d
= 1

2d−1
. In

the same way, we can deduce that the expectation of
the number of 0 (characteristic bit) in τ̄t is r

2d
. From this

encryption process, the characteristic bits in each term
are preserved, and we can check the existence of the
characteristic bits to determine whether a given keyword
exists in the index stored in the cloud.

3.3.4 Binary Search Tree for Indexes
In the previous literature [6], searching a trapdoor
among indexes is fairly inefficient. In this work, we

Table 1
The Binary Search Tree for Index I

′
c

τ̄1τ̄2 . . . τ̄T

τ̄1 . . . τ̄bT2 c
τ̄bT2 +1c . . . τ̄T

. . .

τ̄1 τ̄2 τ̄3 . . . τ̄T

propose to generate a binary search tree for indexes in
order to accelerate the search time.

By utilizing the FAH algorithm, each document’s in-
dex is processed as a hash code comprised by accumu-
lated terms. With time, we can testify if a given trapdoor
appears in this document. If so, we will further identify
the slice within the document, which contains the given
trapdoor. To accelerate the entire procedure, we construct
a binary tree. In this data structure, the top level is a hash
code comprised by all accumulated terms. On the second
level, each descendant only contains the accumulated
terms of half of the index. Further down, all descendants
contain the accumulated terms of half of that from its
parent. With such structure, the height of the tree is at
most s (the number of slices in the index) and thus the
search efficiency is O(s). Table 1 depicts an example.

Before sending the binary search tree to the cloud, the
provider will add noise to the index to prevent statistical
privacy leakage. Here, the method proposed in [6] is
used in the EnDAS system. We define a noise set Θ,
where each noise is accumulated to an index.

3.3.5 RSBS Algorithm

Upon receiving a trapdoor (encrypted form of search
keywords), the cloud would perform a privacy-
preserving search from the indexes provided by the
provider. Then it selects top-k documents that contain
the given search keywords. This process is achieved by
using the RSBS algorithm shown in Algorithm 2.

Algorithm 2 Ranked Serial Binary Search (RSBS) algorithm
Input:

Noised trapdoors (one per search keyword): τ̄1
′
,...,τ̄e

′

Encrypted document indexes: A = Ī
′
1 · · · Ī

′
N

The number of documents to return: k
Output:

Top-k documents that best match the search request:D =
{D1, D2, · · · , Dk}

1: Scores = zeros(0, N) // create an array of N zeros
2: for i := 1 to N do
3: for n := 1 to e do
4: Score[i] ← Score[i] + bsearch(τ̄n

′
,Ī
′
i ,1,si) // search if

the keyword appears in any of the s slices of the
document

5: end for
6: end for
7: sorted, indices = sort(Scores) // sort the score array and

get the indices or old element in the sorted array.
8: D ← indices[0 : k − 1] // get the top-k documents
9: return D

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 8

The RSBS algorithm aims to find the top-k documents
that best match the search keywords provided by the
user. To this end, it maintains a score array for each
document. The main idea is to compute accumulated
scores for each document and then selects the top-k ones.
Thus, RSBS has two layers of loops one line 2 and 3. The
inner most part (line 4) calculates the score of a give
keyword in a given document, with our binary search
mechanism. The binary search will start from the binary
tree we constructed and descend to a slice that contains
the keyword or find that the keyword does not appear in
the document. If the keyword appears in the document,
then the score will be calculated by Equation (6) and
updated to the Scores array. Otherwise, a zero will be
recorded.

Time complexity analysis. The RSBS algorithm tra-
verses through all documents and all keywords in user’s
search request, which makes the inner-most body (line
4) iterated for eN times. Here e represents the number
of keywords provided by the user, and N represents
the number of documents. In each iteration, the binary
search will be executed (line 4), and its time complexity
is O(log(s)) (s slices in each index). Thus RSBS algorithm
has a time complexity of O(eNlog(s)). Comparing with
traditional systems with a time complexity of O(eNs),
RSBS can effectively reduce the search time by utilizing
the binary search. In practice, RSBS algorithm can be
further parallelized to compute eN binary searches con-
currently, which could further reduce its actual execution
time.

4 EVALUATION

In this section, we analyze and evaluate the EnDAS
system’s performance in network traffic and search time.
Next, we introduce the experimental environment and
evaluate it in detail.

4.1 Experimental Environment
To evaluate the EnDAS system, we implemented our sys-
tem on the private cloud with Openstack Essex [19] from
our lab. We rented a virtual machine with 8G memory
for the cloud. We also implemented the RSBS algorithm,
written as a python program, to search and return the
retrieved documents to the user. Here, the user utilized a
mobile device utilized an Android tablet with a Cortex-
A9 Quad 1.4GHz CPU, and 2GB memory. The tablet
is connected to a mobile network with 72Mbps rate.
The trapdoor mapping table is pre-computed on a PC
and uploaded to the mobile device before experiments,
which consumes 0.31MB of device storage.

The encrypted document set used here is the corpus
of 2,386 VOA news [20] extracted from the web site
covering subjects such as politics, education, economy,
military, etc. The number of terms in each news item is
fewer than 211. For simplicity, we choose r = 216 bits.
In order to facilitate construction of the final long hash
code, we let d = 13. That is, the number of terms to be

accumulated is not more than 213. We can achieve the
final l = r×d = 851, 968, which means that each term will
generate a 851,968-bit hash code. The optimized hash
code is 65,536-bit by extracting the characteristic bits.
The 851,968-bit hash code is generated by using MD5,
SHA1 and SHA2 algorithms, recursively. We also gener-
ated 50 noise keywords randomly. We will compare the
search performance of EnDAS, the traditional encrypted
search systems and the plain-text search systems with
no encryption.

4.2 Search Time Evaluation
To reduce the search time and improve the calculation
efficiency, we utilized the TMT module and the RSBS
algorithm in the EnDAS system. In this part, we first
evaluate the overall search time and its breakdown. Then
we present the performance or the RSBS algorithm in
terms of the search time.

4.2.1 Performance of EnDAS in Search Time

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Document Size (KB)

Plain text EnDAS Traditional

Figure 6. The Performance Comparison in Search Time

With the TMT module and the RSBS algorithm, we
evaluate the EnDAS system’s overall performance com-
pared with Traditional and Plain text. We choose 10,000
keywords to search target documents and evaluate the
search time for the three schemes with the document size
ranging from 1KB to 10KB. Results are shown in Figure
6.

In Figure 6, we see that EnDAS saves about 47% of the
time compared to Traditional text for 1 KB documents,
and by 34% for 10KB documents. Notice that the search
time of EnDAS is not much more than that of plain
text. In fact, these results benefit from RSBS algorithm,
but also the TMT module which reduces one network
communication round trip.

To further analyze the overall search process for a
search request, we evaluated the detailed search time, as
shown in Table 2. In this table, we see that two network
round trips in Traditional text cost around 250 ms to
build a noised trapdoor, while single network round
trip in EnDAS only spends 109.79 ms, and the time
reduced for building a trapdoor mainly benefits from
the TMT module. In addition, the transmission time for a

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 9

compressed trapdoor with a small size (from the user to
the cloud) is much less than that for an original trapdoor.
We discuss the reduced search time for documents in
the cloud in Section 4.2.2. In short, the EnDAS system
outperforms the traditional system in terms of search
time.

Table 2
The Comparison of Search Time Breakdown

(U as User, P as Provider, C as Cloud)

Overall Search Process Traditional (ms) EnDAS (ms)

Authentication 55.52 55.61

Transmitting a Keyword (U to P) 28.27 N/A

Building a Trapdoor 174.42 109.79

Transmitting a Trapdoor (P to U) 44.77 N/A

Transmitting a Trapdoor (U to C) 42.68 25.73

Searching Documents in C 69.44 17.21

Documents Retrieval 90.78 87.45

Total Search Time 505.88 295.79

4.2.2 Cloud Search Time with RSBS Algorithm
The RSBS algorithm features a binary search compared
with the RSS algorithm. Now we emphasize the search
time in the cloud with RSBS algorithm and compare it
with RSS algorithm shown in Table 3.

In traditional systems, the index without binary opti-
mization is only the TF-IDF index, while the optimized
index A is used in EnDAS. In this study, we divided
each document’s index into 550 slices; that is, in EnDAS,
each document’s index has 550*2-1=1,099 columns after
they are optimized with the binary tree principle. We
conducted 10,000 queries with random chosen keywords
for the single keyword search, the two keyword search
and the three keyword search, respectively. Search time
is shown in Table 3.

Table 3 indicates that the search time of the cloud with
RSBS is about 60x shorter than that of RSS. This also
indicates that O(eNs) > O(eNlog(s)). The binary search
and the score calculation method shown in Equation
(6), which only requires the additive operation, revealed
these interesting results. In this way, the RSBS algorithm
has a better search efficiency than the RSS algorithm.

To evaluate RSBS’s query accuracy, we build indexes
with different slice numbers and search top-k documents
with two keywords (’government’ and ’security’), and

Table 3
The Comparison of Search Time in Mobile Cloud

Keywords RSS (ms) RSBS (ms)

1 54.14 0.935

2 113.62 1.922

3 160.91 2.745

0

2

4

6

8

10

12

14

16

18

20

22

24

0 5 10 15 20 25 30 35 40 45 50

Sc
or

es

Top-50 Documents

Plain text

Traditional with 550 slices

EnDAS with 550 slices

EnDAS with 275 slices

EnDAS with 183 slices

EnDAS with 110 slices

EnDAS with 1 slice

Figure 7. Scores with Different Slice Numbers

the result is as Figure 7. In this experiment, the blue line
in the Figure 7 is the result calculated from Plain text,
and we choose it as the standard rank. As for accuracy,
we just need to care about the rank, rather than the
detailed scores, and whether the rank is in accordance
with the standard rank. In Figure 7, with the fine-grained
sliced index, EnDAS and Traditional system are similar
with Plain text, that is, fine grain partition for index can
ensure RSBS’s query accuracy.

4.3 Network Traffic Evaluation
In the EnDAS system, which benefits from the trapdoor
compression method and the TMT module, we reduced
network traffic significantly. Next we evaluate and ana-
lyze the overall system network traffic reduction and the
performance of the trapdoor compression method.

4.3.1 Performance of EnDAS in Network Traffic
Assisted by the trapdoor compression method and the
TMT module, EnDAS costs less network traffic than the
traditional system. We evaluate this in the subsection.
Figure 8 shows the throughput comparison of Plain text,
EnDAS and the Traditional system.

We see that the transmission speed for the 1KB-size
document is most effective, and the speed increases from
32 KB/s to 65 KB/s. Even if the document is 10 KB
in size, the transmission speed is also effective (a 21%
improvement). In addition, the throughput of EnDAS is
almost similar as that of Plain text. In a word, the EnDAS
system outperforms the traditional system in terms of
network traffic costs.

4.3.2 Performance of Trapdoor Compression
In this subsection, we test the trapdoor compression’s
effectiveness on the noised trapdoor, and we randomly
choose 10,000 keywords from the corpus and generate
the corresponding trapdoor.

For the pure trapdoor without any noise, its length
is r = 216 bits, so we need 16 bits to denote each

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 10

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

K
B

\s
)

Document Size (KB)

Plain text EnDAS Traditional

Figure 8. The Throughput Comparison

characteristic bit’s location. However, after adding some
noises into the pure trapdoor, we cannot get the length
of the noised trapdoor. Therefore, we choose different
numbers of pure trapdoors to add noise, which are
randomly selected from noise set Θ. The results are
shown in Figure 9. We find that the average length of
trapdoors with some noise is about 20 × rbits; that is,
each pure trapdoor is optimized by 19 noises, as shown
in Figure 9.

Then we compare the size of plain text with that of the
corresponding trapdoor in the traditional system and the
EnDAS system. The results are shown in Figure 10. The
average length of the trapdoor in EnDAS is reduced by
95%, while even in the worst case scenario, the length
of the trapdoor in EnDAS is reduced by 89%. Note that
in the best case scenario, the length of the compressed
trapdoor is equal to its corresponding plain text. This
indicates that this simple compression method is highly
effective, which could reduce network traffic costs.

5 RELATED WORK

Recently, many studies have focused on encrypted
search schemes to protect data security and improve
search efficiency. For data security, we mainly introduce
encryption algorithms and noise methods, while for

0

10

20

30

40

50

60

70

80

90

100

50 100 200 500 1000 2000 5000 10000

L
en

gt
h

 (
×

81
92

 B
yt

es
)

The Number of Noised Trapdoors

Figure 9. The Average Length of Each Noised Trapdoors

1

10

100

1000

10000

100000

1000000

Avg Min Avg Max Min Avg Max

Plain Traditional EnDAS

T
ra

pd
oo

r
S

iz
es

 (
by

te
s)

Different systems

Figure 10. The Comparison of Trapdoor Sizes

performance efficiency, we mainly introduce search algo-
rithms, including the Boolean keyword search algorithm
and the Ranked keyword search algorithm.

For data security, the previous encryption algorithms
cannot directly apply to mobile cloud, because it is hard
to achieve efficient network traffic and search time to
address the important issues for mobile cloud. Agrawal
et al. [21] proposed a one-to-one mapping order preserv-
ing encryption method; however, it leads to information
leaks. Wang et al. [3] proposed a one-to-many mapping
order preserving encryption method that requires a com-
plex computation process, and therefore is not suitable
for the mobile cloud. Wang et al. [4] and Swaminathan
et al. [22] employed an order-preserving encryption [23]
method to retrieve data from encrypted cloud data,
which preserved security perfectly. However, this can
only be applied in a single-keyword search that retrieves
files in a coarse granularity. Some researchers solved this
problem through fully homomorphic encryption [5], [24],
[25], [26], to retain the security of the encrypted search
scheme. In a word, these Order Preserving Encryption
(OPE) algorithms [23], [21] and fully homomorphic en-
cryption [5], [24], [25], [26] methods proved themselves
secure and accurate enough for searching encrypted data
purpose. However, they cost many computing resources.
As network traffic and search time efficiency becoming
important, a complicated algorithm is not suitable in
mobile devices. So we choose an efficient encryption
algorithm, fast accumulated hash (FAH)[11], [12], [13],
to encrypt document’s index and keywords in EnDAS.

Moreover, to protect trapdoor security, adding noise
in the trapdoors is a popular method in traditional
encryption search schemes. Chen et al. [27] proposed
a distributed statistical query scheme with a new noise
method. And this noise method was achieved by adding
random ”coin” value into statistical results. But denoise
method is also required. Orencik et al. [6] presented an
optimized noised method, which can be easily obtained
through adding dummy trapdoor into target trapdoors.
To ensure search time efficiency, we select this method
in EnDAS and do not delete the noise when searching

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 11

in the cloud.
For performance efficiency, previous researchers fo-

cused on search algorithm in the server side, which
can be divided into the Boolean keyword search and
the Ranked keyword search from information retrieval
concerns. In Boolean keyword searches, documents are
searched by the presence and absence of keywords in a
document. In other words, it returns ”all-or-nothing,”
like [28], [29], [30], [31], [32]. Due to this effect, the
Boolean keyword search cannot accurately denote the
relevance between files and the keywords, and all files
containing the keywords will be returned to the data
users. In addition, this method is high-traffic consump-
tive, which is undesirable and reduces the users’ satis-
faction.

The ranked keyword search will return documents
according to the relevance score. Zerr et al. [33] proposed
a novel technique that makes the server side carry out
the search operation. However, it should send many
unrelated documents back and let the user filter them.
This is a waste of traffic, which is unsuitable for the
mobile cloud. Bowers et al. [34] proposed a distributed
cryptographic system that preserved the security of the
document retrieval process and the high availability of
the system, but this system suffers from two network
round trips and lager calculation complexity for target
documents. Wang et al.[3] proposed a single round
trip encrypted search scheme, but their system is not
secure enough, as it leaks the keyword and associated
document information from multiple keyword searches.
Li et al. [35] proposed a single-keyword encryption
search scheme utilizing ranked keyword search, which
optimizes network communication between the user and
the cloud by transferring the computing burden from
the user to the cloud. But it still suffers from inefficient
trapdoor generation process and only supports single-
keyword search. Cao et al. [2], [36] realized a multi-
keyword search method, but when the field of the record
becomes large, their index building procedure would
be extremely time-consuming and their trapdoor vector
would be very large. Wang et al. [37] and Orencik et
al.[14], [6] proposed several novel multi-keyword search
methods, but they still suffered from traffic and search
time inefficiency due to two network round trips. To
achieve search efficiency, we choose a ranked keyword
search algorithm and optimize it with binary tree prin-
ciple. In addition, to address inefficient two network
round trips, we utilize a trapdoor mapping table to
obtain singe network round trip.

6 CONCLUSION

In this work, we proposed a novel encrypted search
system EnDAS over the mobile cloud, which improves
network traffic and search time efficiency compared
with the traditional system. We started with a thorough
analysis of the traditional encrypted search system and
analyzed its bottlenecks in the mobile cloud: network

traffic and search time inefficiency. Then we developed
an efficient architecture of EnDAS which is suitable for
the mobile cloud to address these issues, where we
utilized the TMT module and the RSBS algorithm to cope
with the inefficient search time issue, while a trapdoor
compression method was employed to reduce network
traffic costs. Finally our evaluation study experimentally
demonstrates the performance advantages of EnDAS.

ACKNOWLEDGEMENTS

This work was supported by NSFC (Grant No.61272100,
61202374), 863 Program of China (No. 2012AA010905),
The Ministry of Education Major Project (No. 313035)
and NRF Singapore under its CREATE Program. The
corresponding author is Prof. Haibing Guan.

REFERENCES
[1] D. Huang, “Mobile cloud computing,” IEEE COMSOC Multimedia

Commun. Tech. Committee (MMTC) E-Letter, vol. 6, no. 10, pp. 27–
31, 2011.

[2] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in Proc.
Int. Conf. Comput. Commun. (INFOCOM), Apr. 2011, pp. 829–837.

[3] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and
efficient ranked keyword search over outsourced cloud data,”
IEEE Trans. Parallel Distrib. Systems, vol. 23, no. 8, pp. 1467–1479,
2012.

[4] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked
keyword search over encrypted cloud data,” in Proc. IEEE Int.
Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2010, pp. 253–262.

[5] C. Gentry and S. Halevi, “Implementing gentrys fully-
homomorphic encryption scheme,” in Advances in Cryptology–
EUROCRYPT 2011, 2011, pp. 129–148.

[6] C. Örencik and E. Savaş, “Efficient and secure ranked multi-
keyword search on encrypted cloud data,” in Proc. Joint
EDBT/ICDT Workshops, Mar. 2012, pp. 186–195.

[7] Gartner, “Worldwide traditional pc, tablet, ultramobile and mo-
bile phone shipments on pace to grow 7.6 percent in 2014,”
http://www.gartner.com/newsroom/id/2645115.

[8] Trellian, “Keywords number,” http://www.keyworddiscovery.
com/keyword-stats.html?date=2014-03-01.

[9] V. Rijmen and J. Daemen, “Advanced encryption standard,”
Federal Information Processing Standard, pp. 19–22, 2001.

[10] X. Lai, “On the design and security of block ciphers,” Ph.D.
dissertation, Diss. Techn. Wiss ETH Zürich, Nr. 9752, 1992. Ref.:
JL Massey; Korref.: H. Bühlmann, 1992.

[11] K. Nyberg, “Fast accumulated hashing,” in Proc. Int. Workshop Fast
Softw. Encryption (FSE), Feb. 1996, pp. 83–87.

[12] Nyberg and Kaisa, “Commutativity in cryptography,” in Proc. Int.
Workshop Funct. Anal., 1995.

[13] J. Benaloh and M. De Mare, “One-way accumulators: A decentral-
ized alternative to digital signatures,” in Advances in Cryptology-
EUROCRYPT 1993, 1994, pp. 274–285.

[14] C. Örencik and E. Savaş, “An efficient privacy-preserving multi-
keyword search over encrypted cloud data with ranking,” Distrib.
Parallel Databases, vol. 32, no. 1, pp. 119–160, Mar. 2014.

[15] P. Wang, H. Wang, and J. Pieprzyk, “An efficient scheme of
common secure indices for conjunctive keyword-based retrieval
on encrypted data,” pp. 145–159, 2009.

[16] S. Gendreau, “How many words do i need to know? the 95/5
rule in language learning, part 2/2,” http://www.lingholic.com/
how-many-words-do-i-need-to-know-the-955-rule-in-language/
-learning-part-2.

[17] Manythings.org, “English vocabulary,” http://www.manythings.
org/vocabulary/lists/l/.

[18] J. S. Culpepper, G. Navarro, S. J. Puglisi, and A. Turpin, “Top-k
ranked document search in general text databases,” in Proc. Annu.
Euro. Conf. Algorithms (ESA), Sep. 2010, pp. 194–205.

[19] R. cloud computing, “Openstack cloud software,” http://www.
openstack.org.

http://www.gartner.com/newsroom/id/2645115
http://www.keyworddiscovery.com/keyword-stats.html?date=2014-03-01
http://www.keyworddiscovery.com/keyword-stats.html?date=2014-03-01
http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language/-learning-part-2
http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language/-learning-part-2
http://www.lingholic.com/how-many-words-do-i-need-to-know-the-955-rule-in-language/-learning-part-2
http://www.manythings.org/vocabulary/lists/l/
http://www.manythings.org/vocabulary/lists/l/
http://www.openstack.org
http://www.openstack.org

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TETC.2015.2445101, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 12

[20] VOANEWS.COM, “Voice of american,” http://www.voanews.
com.

[21] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data (COMAD), Jun. 2004, pp. 563–574.

[22] A. Swaminathan, Y. Mao, G.-M. Su, H. Gou, A. L. Varna, S. He,
M. Wu, and D. W. Oard, “Confidentiality-preserving rank-ordered
search,” in Proc. ACM Workshop Storage Secur. Survivability (Stor-
ageSS), Oct. 2007, pp. 7–12.

[23] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill, “Order-
preserving symmetric encryption,” in Advances in Cryptology-
EUROCRYPT 2009, 2009, pp. 224–241.

[24] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

[25] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan,
“Fully homomorphic encryption over the integers,” in Advances
in Cryptology-EUROCRYPT 2010, 2010, pp. 24–43.

[26] D. Stehlé and R. Steinfeld, “Faster fully homomorphic encryp-
tion,” in Advances in Cryptology-ASIACRYPT 2010, 2010, pp. 377–
394.

[27] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke, “Towards
statistical queries over distributed private user data,” in USENIX
Symp. Netw. Syst. Des. Implementation (NSDI), vol. 12, 2012, pp.
13–13.

[28] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Priv. (SSP),
May. 2000, pp. 44–55.

[29] E.-J. Goh et al., “Secure indexes,” IACR Cryptology ePrint Archive,
vol. 2003, p. 216, 2003.

[30] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology-
Eurocrypt 2004, 2004, pp. 506–522.

[31] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Proc. Int. Conf. Appl.
Cryptogr. Netw. Secur. (ACNS), Jun. 2005, pp. 442–455.

[32] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient con-
structions,” in Proc. ACM Conf. Comput. Commun. Secur. (CCS),
Oct. 2006, pp. 79–88.

[33] S. Zerr, E. Demidova, D. Olmedilla, W. Nejdl, M. Winslett, and
S. Mitra, “Zerber: r-confidential indexing for distributed docu-
ments,” in Proc. Int. Conf. Extending Database Technol. (EDBT), Mar.
2008, pp. 287–298.

[34] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-availability
and integrity layer for cloud storage,” in Proc. ACM Conf. Comput.
Commun. Secur. (CCS), Dec. 2009, pp. 187–198.

[35] J. Li, R. Ma, and H. Guan, “Tees: An efficient search scheme over
encrypted data on mobile cloud,” IEEE Trans. Cloud Comput., Feb.
2015.

[36] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE
Trans. Parallel Distrib. Systems, vol. 25, no. 1, pp. 222–233, Jan. 2014.

[37] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in Proc.
Int. Conf. Comput. Commun. (INFOCOM), Apr. 2014, pp. 2112–
2120.

RuHui Ma received his Ph.D. degree in com-
puter science from Shanghai Jiao Tong Uni-
versity (SJTU), China, in 2011. Now he is an
Assistant Professor in SEIEE at SJTU. His main
research interests are in virtual machines, com-
puter architecture and compiling.

HaiBing Guan received his Ph.D. degree in
computer science from the Tongji University
(China), in 1999. He is currently a professor with
the Faculty of Computer Science, Shanghai Jiao
Tong University (SJTU), Shanghai, China. His
current research interests include virtualization
and hardware/software co-design.

Jian Li obtained his Ph.D. in Computer Science
from the Institute National Polytechnique de Lor-
raine (INPL) - Nancy, France in 2007. He is an
Associate Professor in the School of Software
at SJTU. His research interests include real-time
scheduling theory, network protocol design and
embedded systems.

Mingyuan Xia is a PhD. student at McGill Uni-
versity. His research interests include mobile
software systems, storage systems and big data
stacks, etc. He received bachelor degree from
Shanghai Jiao Tong University.

Xue Liu is an Associate Professor in the School
of Computer Science at McGill University. He
obtained his Ph.D. in Computer Science from
the University of Illinois at Urbana-Champaign
in 2006. His research interests include green IT,
embedded systems and networking.

http://www.voanews.com
http://www.voanews.com

