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Abstract—This paper focuses on quantized channel state in-
formation (CSI) feedback for downlink network MIMO systems.
Specifically, we propose to quantize and feedback the CSI of a
subset of BSs, namely the feedback set. Our analysis reveals the
tradeoff between better interference mitigation with large feed-
back set and high CSI quantization precision with small feedback
set. Given the number of feedback bits and instantaneous/long-
term channel conditions, each user optimizes its feedback set
distributively according to the expected SINR derived from our
analysis. Simulation results show that the proposed feedback
adaptation scheme provides substantial performance gain over
non-adaptive schemes, and is able to effectively exploit the
benefits of network MIMO under various feedback bit budgets.

Index Terms—Network MIMO, base station coordination,
limited feedback, co-channel interference.

I. INTRODUCTION

MANAGING inter-cell co-channel interference (CCI) has
been a key issue for wireless cellular networks. Tra-

ditional ways of CCI mitigation either require extra band-
width for large reuse factor, or rely on highly complex
signal processing which is not practical for mobile devices.
Recently, with the development of multiple input multiple
output (MIMO) technologies and the enhanced base station
(BS) processing capability, network-wise solutions have been
proposed to combat inter-cell CCI [1]–[3]. The basic idea is
to treat a group of BSs as a “super-BS" with multiple non-
colocated antennas, also known as network MIMO. By sharing
the user data and channel state information (CSI), multiple
BSs coherently coordinate the transmission and reception, thus
other-cell signals are used to assist transmission instead of
acting as interference.

Although significant capacity gain provided by network
MIMO has been predicted through theoretical analyses [1][2]
and simulations [7] with perfect CSI, little efforts have been
made with limited CSI feedback [9]. Practical network MIMO
systems only allow restricted number of coordinating BSs
to form clusters [3][7]. While larger cluster provides better
performance with lower inter-cell CCI[4], the CSI feedback
should grow proportionally with the cluster size. Fortunately,
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for a specific user, as antennas on the non-collocated BSs
have different channel statistics, also known as “channel
asymmetry", intuitively BSs with larger path-loss and large-
scale fading are less beneficial to cooperate. There are chances
for feedback reduction by ignoring the CSI from BSs with
relatively weak signals. Nevertheless, very limited work ex-
ploits these chances with quantified feedback constraints.
Ref. [8] proposes to feedback CSI of the BSs with channel
gains larger than a threshold. However, the number of CSI
feedback coefficients per user has no closed-form relation
with the threshold, and the realistic quantized CSI feedback
is not considered, thus the amount of feedback cannot be
explicitly controlled. In [4] and [5], quantized CSI feedback
and quantization bit allocation are considered, however, for
coordinated single-BS transmission (i.e., MIMO interference
channel). Other approaches like [14] and [15] only require
each BS to have local CSI of its own channel to users, which is
more beneficial for reducing CSI exchange over the backhaul,
not for feedback reduction.

In this paper, we consider the downlink multi-user (MU)
network MIMO where quantized CSI is fed back. The feed-
back amount is explicitly characterized by the number of
feedback bits 𝐵. Since the performance of MU-MIMO is
very sensitive to CSI error [11], intuitively 𝐵 should scale
proportionally with the cluster size. Therefore, a key tradeoff
exists between reducing inter-cell CCI with larger cluster
and reducing intra-cluster interference induced by CSI quan-
tization error with smaller cluster. Herein, instead of tuning
the cluster size which is generally fixed with the system
configuration, we propose to adapt the CSI feedback set in
a per-user manner, where the feedback set is defined as the
subset of BSs with respect to which the CSI is quantized. We
first derive a lower bound of the expected receive SINR, given
𝐵, the feedback set, and instantaneous/long-term channel
conditions. By maximizing the SINR lower bound, each user
independently determines its optimal feedback set, in which
the BSs act as an effective coordination cluster to jointly
serve the user. The feedback bits are thus optimally utilized
to exploit the benefits of network MIMO cooperation.

Notations:∣ ⋅ ∣ denotes the cardinality of a set. ∥ ⋅ ∥ denotes
the Euclidean norm of a vector (or absolute value of a scalar).
(⋅)𝑇 and (⋅)� denote the transpose and transpose conjugate of
a matrix, respectively. 𝔼 represents the expectation operation.
Some of the symbol notations that are used throughout this
paper are listed in Table I.

II. CLUSTERED NETWORK MIMO COORDINATION

We consider the downlink of a cellular network with
universal frequency reuse, where each BS is equipped with
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Fig. 1. Example of a clustered network MIMO system, with ∣ℬ𝑐∣ = 3,
𝑁𝑡 = 3. Three non-sectorized cells form a cluster and each cell has one BS.
A CSI feedback set ℱ𝑘 = {(𝑐, 2), (𝑐, 3)} and corresponding notations are
also depicted.

𝑁𝑡 antennas and each user has a single antenna. The whole
network is divided into disjointing cell clusters [3] [7], i.e.,
each BS belongs to one cluster and each user is served by one
cluster, as shown in Fig. 1. A cluster, denoted by 𝑐, contains
a group of BSs, denoted by ℬ𝑐, and each of the ∣ℬ𝑐∣ BSs in
ℬ𝑐 is denoted by (𝑐, 𝑏). With fully shared user data, the BSs
in the cluster execute joint linear precoding for the scheduled
users (denoted by 𝒮(𝑐)) based on the available CSI. Block
fading model is assumed so that the channel is static over one
scheduling interval. The received signal of user 𝑘, if scheduled,
is given by

𝑦𝑘 =

�� 𝑐�∑
𝑏=1

h
(𝑐,𝑏)
𝑘 w

(𝑐,𝑏)
𝑘 𝑑𝑘︸ ︷︷ ︸

desired signal

+

�� 𝑐�∑
𝑏=1

h
(𝑐,𝑏)
𝑘

�� (𝑐)�∑
𝑖=1,𝑖�=𝑘

w
(𝑐,𝑏)
𝑖 𝑑𝑖

︸ ︷︷ ︸
intra-cluster interference

+
∑
𝑐′�=𝑐

�� 𝑐′ �∑
𝑏′=1

h
(𝑐′,𝑏′)
𝑘

∑
𝑗�� (𝑐′)

w
(𝑐′,𝑏′)
𝑗 𝑑𝑗

︸ ︷︷ ︸
inter-cluster interference

+𝑛𝑘, (1)

where we have: h
(𝑐,𝑏)
𝑘 = 𝑙

(𝑐,𝑏)
𝑘 h̄

(𝑐,𝑏)
𝑘 denotes the 1 × 𝑁𝑡

channel vector from BS (𝑐, 𝑏) to user 𝑘, where 𝑙
(𝑐,𝑏)
𝑘 accounts

for the large-scale path-loss and shadowing, and small-scale
fast fading is assumed to be uncorrelated Rayleigh fading
so that h̄

(𝑐,𝑏)𝑇

𝑘 ∼ 𝒞𝒩 (0, I𝑁𝑡); w
(𝑐,𝑏)
𝑘 denotes the 𝑁𝑡 × 1

precoding vector for user 𝑘 on BS (𝑐, 𝑏); 𝑑𝑘 is the intended
data signal for user 𝑘; 𝑛𝑘 is the additive white Gaussian noise
at user 𝑘, with zero mean and variance 𝜎2

𝑛. For the ease of
further presentations, we denote the aggregate 1 × 𝑁𝑡∣ℬ𝑐∣
channel vector from all BSs in cluster 𝑐 to user 𝑘 as
h𝑘 = [h

(𝑐,1)
𝑘 ,h

(𝑐,2)
𝑘 , . . . ,h

(𝑐,�� 𝑐�)
𝑘 ] (shown in Fig. 1). Similarly,

denote the 𝑁𝑡∣ℬ𝑐∣ × 1 precoding vector from cluster 𝑐 to

user 𝑘 by w𝑘 = [w
(𝑐,1)𝑇

𝑘 ,w
(𝑐,2)𝑇

𝑘 , . . . ,w
(𝑐,�� 𝑐�)𝑇

𝑘 ]𝑇 . Also, w𝑘

is normalized to unit norm, and thus 𝔼(𝑑𝑘𝑑
�
𝑘) = 𝑃𝑘 is the

transmission power allocated for user 𝑘.
In this paper, zero-forcing beamforming (ZFBF) [13] is

used to suppress the intra-cluster interference, which satisfies

TABLE I
SYMBOL NOTATIONS

𝑐 BS cluster

ℬ𝑐 Set of BSs in cluster 𝑐

(𝑐, 𝑏) BS 𝑏 in cluster 𝑐

𝒮(𝑐) Scheduled users in cluster 𝑐

𝑁𝑡 Number of transmit antennas on a BS

𝑃𝑘 Allocated power for user 𝑘

� (𝑐,𝑏)
𝑘 Channel vector from BS (𝑐, 𝑏) to user 𝑘

� 𝑘 Aggregate channel vector to user 𝑘

� (𝑐,𝑏)
𝑘 Precoding vector from BS (𝑐, 𝑏) to user 𝑘

� 𝑘 Aggregate precoding vector to user 𝑘

ℱ𝑘 BS Feedback set of user 𝑘

� ℱ𝑘
𝑘 Aggregate channel vector from ℱ𝑘 to user 𝑘

�� ℱ𝑘
𝑘 Normalized version of � ℱ𝑘

𝑘

�̂ ℱ𝑘
𝑘 Quantized version of �� ℱ𝑘

𝑘 to be fed back

�̂ 𝑘 Quantized channel vector recovered from �̂ ℱ𝑘
𝑘

𝜃
ℱ𝑘
𝑘 Angle between �̂ ℱ𝑘

𝑘 and �� ℱ𝑘
𝑘

ĥ𝑘w𝑖 = 0, ∀𝑖 ∕= 𝑘, 𝑖 ∈ 𝒮(𝑐), where ĥ𝑘 is the quantized
channel vector recovered from the feedback of user 𝑘. As
for the power allocation, we use the sum power constraint

(SPC) for each cluster, i.e.,
�� (𝑐)�∑
𝑘=1

𝑃𝑘 ≤ ∣ℬ𝑐∣𝑃𝐵 , where 𝑃𝐵

is the maximum transmit power for single-BS transmission.
With much lower calculation complexity, SPC is a good
approximation to per-BS power constraint (PBPC), especially
when scheduling is adopted among many users due to multi-
user diversity [3][6]. Same assumption is made for the per-
formance evaluation of network MIMO systems in [7]. To
make the analysis trackable, equal power allocation is assumed
in the next section, while more advanced power allocation
optimization is adopted in the simulations, which will be
described in Section IV.

III. CSI FEEDBACK SET OPTIMIZATION

In this section, a CSI feedback set adaptation scheme is
proposed to enhance system performance under feedback bit
constraints.

A. Framework of CSI Feedback Set Adaptation

Frequency division duplex (FDD) is considered so that the
CSI required for downlink transmission should be obtained
through quantized feedback [9]. In this paper, CSI feedback
set adaptation is proposed, i.e., the equivalent channel vector
h� 𝑘

𝑘 with any subset of the BSs ℱ𝑘 ⊆ ℬ𝑐 can be quantized
and fed back by user 𝑘 to its home BS1, where

h� 𝑘

𝑘 = [h
(𝑐,𝑏1)
𝑘 ,h

(𝑐,𝑏2)
𝑘 , . . . ,h

(𝑐,𝑏∣ℱ𝑘∣)
𝑘 ], (2)

and ℱ𝑘 = {(𝑐, 𝑏𝑖)∣𝑖 = 1, . . . , ∣ℱ𝑘∣}. Note that the dimension of
h� 𝑘

𝑘 is 1×𝑁𝑡∣ℱ𝑘∣. To assist limited feedback, the channel di-
rection information (CDI) h̃� 𝑘

𝑘 = h� 𝑘

𝑘 /∥h� 𝑘

𝑘 ∥ is quantized to
a unit norm vector ĥ� 𝑘

𝑘 , which is chosen from a codebook 𝒱𝑘

with unit norm 1×𝑁𝑡∣ℱ𝑘∣ vectors of size 𝑁 = 2𝐵, according

1The home BS is the one that user 𝑘 associates to, and is generally with
the largest 𝑙(𝑐,𝑏)𝑘 . After user feedback, the CSI is shared among the cluster
BSs over the backhaul.
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to the minimum distance criterion: ĥ� 𝑘

𝑘 = arg max
v�	 𝑘

∥h̃� 𝑘

𝑘 v� ∥
[11][12]. Then the 𝐵-bit index of the codeword is fed back.
We assume perfect CSI estimation at the users, and the
feedback channel is error-free and without delay.

In this paper we use random vector quantization (RVQ)
[10], where the vectors in 𝒱𝑘 are independently and isotropi-
cally distributed on the ∣ℱ𝑘∣𝑁𝑡-dimensional unit sphere. Sim-
ple for analysis, RVQ also serves as a close lower-bound to
the system performance [10][11]. In practice, when a specific
codebook design is adopted, because the user codebooks 𝒱𝑘

are different in terms of vector dimension ∣ℱ𝑘∣𝑁𝑡, the storage
of all the possible subset codebooks seems to be large at
first glance. In fact, they can be generated on demand from
a “basic codebook" 𝒱 containing 𝑁 vectors with dimension
1 × 𝐶max𝑁𝑡, where 𝐶max is the largest cluster size the
system can support. Then 𝒱𝑘 is obtained by cutting out and
normalizing a predefined combination of ∣ℱ𝑘∣𝑁𝑡 dimensions
of the vectors in 𝒱 . As a result, no storage increase is required.

At the BS side, the unit norm 1×𝑁𝑡∣ℬ𝑐∣ equivalent channel
vector ĥ𝑘 should be recovered from the feedback version ĥ� 𝑘

𝑘 .
Specifically, if ℱ𝑘 = ℬ𝑐, ĥ𝑘 = ĥ� 𝑘

𝑘 . Otherwise ℱ𝑘 ⊂ ℬ𝑐, then
ĥ𝑘 equals ĥ� 𝑘

𝑘 on the corresponding dimensions, and equals
0 elsewhere, see Fig. 1. For example, if ℱ𝑘 corresponds to the
first ∣ℱ𝑘∣ BSs in the cluster 𝑐, i.e., in (2), 𝑏𝑖 = 1, . . . , ∣ℱ𝑘∣,
we have ĥ𝑘 = [ĥ� 𝑘

𝑘 ,01
 𝑁𝑡(�� 𝑐���� 𝑘�)], where the unit norm
property still holds. It is assumed that the channel quality
information (CQI) is fed back without quantization, because
CQI feedback does not scale with the cluster size and thus is
not the focus of this paper.

B. Impact of Quantized Feedback

For the analysis, assume that 𝑁𝑡∣ℬ𝑐∣ users are
scheduled in the cluster, and the transmit power
is equally allocated among users with 𝑃𝐵/𝑁𝑡. Let
𝑧𝑘 =

∑
𝑐′�=𝑐

∑
𝑗�� (𝑐′) ∥

∑�� 𝑐′ �
𝑏′=1 h

(𝑐′,𝑏′)
𝑘 w

(𝑐′,𝑏′)
𝑗 ∥2𝑃𝑗 + 𝜎2

𝑛

denote the inter-cluster interference plus noise at user 𝑘. The
SINR of user 𝑘 is given by

𝛾𝑘 =
∥h𝑘w𝑘∥2

𝑁𝑡�� 𝑐�∑
𝑗=1,𝑗�=𝑘

∥h𝑘w𝑗∥2 + 𝑧𝑘𝑁𝑡

𝑃𝐵

. (3)

The following discussions concentrate on a specific cluster
𝑐, so the pairwise notation of BS (𝑐, 𝑏) is simplified to 𝑏. From
the 𝑘th user’s point of view, the expected SINR follows the
following theorem.

Theorem 1:Given h𝑘, CSI feedback set ℱ𝑘, codebook size
𝑁 = 2𝐵 , the expected SINR of user 𝑘 over recovered channel
vector ĥ𝑘 and beamformers {w𝑗}𝑁𝑡�� 𝑐�

𝑗=1 is lower bounded by2

𝔼{𝛾𝑘} ≥ 𝛾LB
𝑘

Δ
=

𝔼
{∥h𝑘w𝑘∥2

}
𝑧𝑘𝑁𝑡

𝑃𝐵
+ 2

� 𝐵
𝑁𝑡∣ℱ𝑘∣−1

∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2 + ∑

𝑏′ /�� 𝑘

∥h
(𝑏′)
𝑘 ∥2

.

(4)

2Note that in the case of 𝑁𝑡 = 1, 𝐵
𝑁𝑡∣ℱ𝑘∣−1

would be singular when the

feedback set only has one BS. Nevertheless, 2
− 𝐵

𝑁𝑡∣ℱ(𝑘)∣−1 approaches zero,
and it is reasonable because in this case the equivalent channel reduces to a
scalar channel and we assumed perfect CQI.

Proof: See Appendix.
The value of 𝔼

{∥h𝑘w𝑘∥2
}

in the numerator is related to
how scheduling is performed. Two representative cases for
calculating 𝔼

{∥h𝑘w𝑘∥2
}

are illustrated.
Case 1: If the 𝑁𝑡∣ℬ𝑐∣ users are selected randomly (or

equivalently round-robin scheduling), beamformer w𝑘 is sta-
tistically independent of h𝑘. Due to the same reason as
described in the proof of Theorem 1 for {w𝑖}𝑖�=𝑘, it is
also reasonable for each user 𝑘 to view w𝑘 isotropically
distributed in the unit sphere of ℂ𝑁𝑡 �� 𝑐�
 1. In this case, we
have ∥h𝑘w𝑘∥2 ∼ ∥h𝑘∥2𝛽(1, 𝑁𝑡∣ℬ𝑐∣ − 1) [11]. Therefore

𝔼w𝑘

{∥h𝑘w𝑘∥2
}
= ∥h𝑘∥2/(𝑁𝑡∣ℬ𝑐∣) =

�� 𝑐�∑
𝑏=1

∥h
(𝑏)
𝑘 ∥2/(𝑁𝑡∣ℬ𝑐∣).

(5)
Case 2: When advanced scheduling scheme is utilized

[13][17], and if the number of users is large, the channel
vectors of selected users are mutually orthogonal. Thus the
two vectors ĥ�

𝑘 and w𝑘 are aligned. Note that ĥ𝑘 is zero on
the dimensions corresponding to the BSs outside ℱ𝑘, and so
does w𝑘. Hence we have ∥h𝑘w𝑘∥2 = ∥h� 𝑘

𝑘 ∥2 cos2 𝜃� 𝑘

𝑘 =∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2 cos2 𝜃� 𝑘

𝑘 . Then the expectation 𝔼w𝑘

{∥h𝑘w𝑘∥2
}

can be derived with the results in [12]. Or the upper bound
for 𝔼

{
sin2 𝜃� 𝑘

𝑘

}
from [11] can be utilized to lower bound

the expectation as

𝔼w𝑘

{∥h𝑘w𝑘∥2
} ≥

(
1− 2

� 𝐵
𝑁𝑡∣ℱ𝑘∣−1

) ∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2. (6)

We remark that the proposed feedback set adaptation al-
gorithm, which will be detailed next, is not restricted to any
specific scheduling scheme. One should choose from the above
two cases based on the scheduling scheme adopted. We will
also illustrate the usage of the two cases in the next sub-section
when the overhead of the proposed algorithm is discussed.

C. Distributed Feedback Set Optimization Algorithm

For the denominator in the expression of 𝛾LB
𝑘 ,

∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2

represents the co-user CCI due to quantization error, and
𝑧𝑘𝑁𝑡/𝑃𝐵 +

∑
𝑏′ /�� 𝑘

∥h
(𝑏′)
𝑘 ∥2 represents the inter-cell CCI that

has not been tackled by network MIMO coordination. The
BSs of ℬ𝑐 outside ℱ𝑘 behave equivalently as interference
sources as those BSs of other clusters, i.e., reducing ℱ𝑘 is like
shrinking the effective cluster for the user. Therefore, given 𝐵,
there exists a tradeoff between CCI mitigation (prefers larger
ℱ𝑘) and CSI quantization precision (prefers smaller ℱ𝑘). The
best CSI feedback set ℱ �

𝑘 should be determined based on the
channel conditions {h

(𝑏)
𝑘 , 𝑏 ∈ 𝑐} as

ℱ �
𝑘 = argmax

� 𝑘

𝛾LB
𝑘 . (7)

Naturally it requires to search all the possible BS subsets of
ℬ𝑐. However, the following corollary assures simple linear
search for both case 1 and case 2.

Corollary 1: The optimal CSI feedback set ℱ �
𝑘 that maxi-

mizes the expected SINR low bound 𝛾LB
𝑘 satisfies: ∀𝑏 ∈ ℱ �

𝑘

and ∀𝑏� /∈ ℱ �
𝑘 , ∥h

(𝑏)
𝑘 ∥2 ≥ ∥h

(𝑏′)
𝑘 ∥2 always holds.
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Proof: The proof can be done by contradiction. Suppose
there exist BS 𝑏 ∈ ℱ �

𝑘 and BS 𝑏� /∈ ℱ �
𝑘 , so that ∥h

(𝑏)
𝑘 ∥2 <

∥h
(𝑏′)
𝑘 ∥2. Because 2

� 𝐵
𝑁𝑡∣ℱ∗

𝑘
∣−1 < 1, in ℱ �

𝑘 , replacing 𝑏 by
𝑏� always increases 𝛾LB

𝑘 for both case 1 and case 2. It then
contradicts the fact that ℱ �

𝑘 is the optimal CSI feedback set.
As a result, the original corollary holds.

Based on Corollary 1, each user distributively determines
its feedback set by Algorithm 1, where we explicitly write the
SINR lower bound as a function of ℱ𝑘 by 𝛾LB

𝑘 (ℱ𝑘). Since it
is not practical to have 𝑧𝑘 when executing Algorithm 1, 𝑧𝑘 is
approximated by its expectation

𝑧𝑘 ≈
∑
𝑐′�=𝑐

𝔼

⎧⎨
⎩ ∑

𝑗�� (𝑐′)

∥
�� 𝑐′ �∑
𝑏′=1

h
(𝑐′,𝑏′)
𝑘 w

(𝑐′,𝑏′)
𝑗 ∥2𝑃𝑗

⎫⎬
⎭+ 𝜎2

𝑛

=
∑
𝑐′�=𝑐

�� 𝑐′ �∑
𝑏′=1

∥h
(𝑐′,𝑏′)
𝑘 ∥2𝑃𝐵/𝑁𝑡 + 𝜎2

𝑛, (8)

where the last equality holds because: 1) Full load schedul-
ing is assumed with ∣𝒮(𝑐�)∣ = 𝑁𝑡∣ℬ𝑐′ ∣; 2) Equal power
allocation is assumed so that 𝑃𝑗 = 𝑃𝐵/𝑁𝑡; 3) h

(𝑐′,𝑏′)
𝑘

and w
(𝑐′,𝑏′)
𝑗 are mutually independent, and the direction

of w𝑗 = [w
(𝑐′,1)𝑇

𝑗 ,w
(𝑐′,2)𝑇

𝑗 , . . . ,w
(𝑐′,�� 𝑐′ �)𝑇

𝑗 ]𝑇 can be con-

sidered isotropic so that 𝔼

{
∥∑�� 𝑐′ �

𝑏′=1 h
(𝑐′,𝑏′)
𝑘 w

(𝑐′,𝑏′)
𝑗 ∥2

}
=∑�� 𝑐′ �

𝑏′=1 ∥h
(𝑐′,𝑏′)
𝑘 ∥2/(𝑁𝑡∣ℬ𝑐′ ∣) 3.

Algorithm 1 CSI Feedback Set Adaptation

Initialization: Set ℱ𝑘 = ∅ and ℒ = ℬ𝑐

while ℒ ∕= ∅ do
Find 𝑏� = argmax𝑏� ∥h

(𝑏)
𝑘 ∥2

if 𝛾LB
𝑘 (ℱ𝑘 ∪ {𝑏� }) > 𝛾LB

𝑘 (ℱ𝑘) then
ℱ𝑘 = ℱ𝑘 ∪ {𝑏� } and ℒ = ℒ ∖ {𝑏� }

else
Return ℱ �

𝑘 = ℱ𝑘

end if
end while

It is important to note that indicating the feedback set
introduces extra feedback overhead. To address this issue,
we consider two extreme scenarios about how frequently
Algorithm 1 is performed: In one case Algorithm 1 is executed
at each scheduling interval (denoted by fast adaptation, with
Case 2matric); The other is the scenario when the feedback set
is merely determined by large-scale path-loss and shadowing
𝑙
(𝑏)
𝑘 , which varies very slowly. One can simply replace the
∥h

(𝑏)
𝑘 ∥ by its expectation 𝑙

(𝑏)
𝑘

√
𝑁𝑡 in the expressions of 𝛾LB

𝑘

(denoted by slow adaptation, with Case 1metric, as in the
long-term, users got almost equal scheduling opportunities
with fairness scheduling schemes). It is confirmed by simula-
tions that slow adaptation works very close to fast adaptation.
This indicates that the large-scale path-loss and shadowing is
the main factor that determines the optimal feedback set, and
thus the update rate of the feedback set can be made very low,
which introduces negligible feedback overhead compared to

3In this case, ∥∑∣ℬ𝑐′ ∣
𝑏′=1

� (𝑐′,𝑏′)
𝑘 � (𝑐′,𝑏′)

𝑗 ∥2 ∼
∑∣ℬ𝑐′ ∣

𝑏′=1
∥� (𝑐′,𝑏′)

𝑘 ∥2𝛽(1, 𝑁𝑡∣ℬ𝑐′ ∣ − 1).

CSI feedback. In practice, the appropriate feedback set update
frequency is between the above two cases according to the
stability of the channel.

Although in the analysis we assume RVQ, the extension
to other codebook design can be accomplished by replacing
2

� 𝐵
𝑁𝑡∣ℱ𝑘∣−1 in the expression of 𝛾LB

𝑘 with the expectation of
sin2 𝜃� 𝑘

𝑘 for the corresponding codebook.
It has been shown that SINR feedback is superior over

channel norm feedback under limited CDI feedback [13].
Therefore 𝛾LB

𝑘 can also be used as CQI for scheduling by

replacing 2
� 𝐵

𝑁𝑡∣ℱ𝑘∣−1 with the actual value of sin2 𝜃� 𝑘

𝑘 , which
is adopted in our simulations.

IV. SIMULATION RESULTS

A sectorized cellular network is tested [7], where each
hexagonal cell has 3 collocated BSs. Each BS corresponds
to a 120-degree sector with 𝑁𝑡 = 2, and the antenna angular
pattern is -min{12(𝜃/70𝑜)2, 20}dB, where 𝜃 is the angle with
respected to the antenna broadside direction. The path-loss
exponent is 3.5, and the lognormal shadowing deviation is 8
dB. The 𝑃𝐵 and 𝜎2

𝑛 are set so that the cell edge reference
SNR4 is 20dB. One simulation includes 80 topology drops,
and in every drop 20 users are randomly distributed in each
cell. Multiuser proportional fair scheduling (MPFS) is exe-
cuted, where we use a greedy user selection algorithm based
on [17] with weighted sum-rate as optimization object, i.e.,
the weight 𝜔𝑘 = 1/𝑇𝑘, where 𝑇𝑘 is the average throughput
perceived by user 𝑘 up to last time slot, and is updated with
fairness factor 𝜏 = 10(time slots) [16]. Then power allocation
is adopted to maximize the weighted sum-rate of the scheduled
users in cluster 𝑐

max
𝑃𝑘,𝑘=1,...,�� (𝑐)�

�� (𝑐)�∑
𝑘=1

𝜔𝑘𝑅𝑘, s.t.
�� (𝑐)�∑
𝑘=1

𝑃𝑘 ≤ ∣ℬ𝑐∣𝑃𝐵 ,

(9)
where 𝑅𝑘 = log(1 + 𝛾𝑘) is the expected rate of user 𝑘,
and the received SINR 𝛾𝑘 is given by (3). Also, in order to
decouple the power allocation optimization among clusters,
the approximation of 𝑧𝑘 can be further derived from (8).
Therefore (9) is convex and can be efficiently solved. The
reason for using MPFS is that fairness should be considered
for the performance evaluation in the multi-cell environment,
otherwise the system will always schedule users in cell
or cluster centers. We use the cellular network simulation
methodologies provided in [7]. Utilizing the statistics of RVQ
[11][12], the quantization procedure can be precisely emulated
without having to do actual quantization.

Denoted by no-C as no BS coordination, and 𝐾-C as the
clustering of 𝐾 adjacent cells with 3𝐾 BSs, and the clustering
patterns can be found in [3] [7]. Fig. 2 and Fig. 3 show the
cumulative distribution function (CDF) of per user spectral
efficiency, with 𝐵 = 20 and 𝐵 = 5 respectively. It is shown
that the performance of network MIMO without feedback
adaptation degrades severely under limited feedback, and is
even worse than no-C. On the contrary, the proposed 3-C fast

4The reference SNR is defined as the SNR assuming a single antenna at the
cell center transmits at full power and accounting only for the distance-based
path-loss.
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Fig. 2. CDF of spectral efficiency per user (bps/Hz), with 𝐵 = 20. The
cross points with the horizontal dashed line indicate the 5% outage rate.
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Fig. 3. CDF of spectral efficiency per user (bps/Hz), with 𝐵 = 5. The cross
points with the horizontal dashed line indicate the 5% outage rate.

adaptation provides substantial gain over no-C, by 15% on
average, and 60% for 5%-outage rate with 𝐵 = 20. Even
with 𝐵 = 5, 3-C fast adaptation still maintains 45% gain
for 5%-outage rate. Slow adaptation works very close to fast
adaptation, which means that the proposed scheme is robust
to rapid channel variation. It is also observed that even under
perfect CSI, 7-C does not provide evident gain over 3-C, and
so does the proposed scheme, where only 7-C fast adaptation
is depict in Fig. 2. This is mainly because remote BSs have
little values on CCI mitigation.

By changing 𝐵, Fig. 4 clearly shows the tradeoff between
CCI mitigation and feedback precision. For small 𝐵, the bad
CSI precision with large cluster introduces severe co-user
interference, which outweighs the mitigated inter-cell CCI. As
𝐵 increases, large cluster gradually shows the performance
gain. Since the effective cluster size of users can be tuned
according to 𝐵 (as shown in Fig. 5 that the average number
of ∣ℱ𝑘∣ increases in proportional to 𝐵), the proposed feedback
set adaptation guarantees the gain of network MIMO coordi-
nation under various feedback budgets, as 3-C fast adaptation
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Fig. 5. Average number of BSs in CSI feedback set ∣ℱ𝑘∣ versus 𝐵.

performs the best over all the tested 𝐵. This also indicates
that the fixed method to feedback the CSI of 𝑀 BSs with
the largest channel gains proposed in [8] is not suitable for
quantized feedback scenario, as it fails to adapt 𝑀 according
to 𝐵. The performance gap between slow and fast adaptation
is more evident with larger 𝐵, because more details of the
CSI variation can be described by the increased bits with fast
adaptation. From a different perspective, the bit budget offsets
are also shown in Fig. 4, which represents the additional
feedback bits for indicating BS set that can be exploited to
get performance gain over slow adaptation. Naive approach
requires 9 bits (9 sector BSs in the 3-C scenario), which is
larger than the offsets. Therefore, intelligent bit compression
for fast adaptation, based on the results of slow adaption and
the temporal correlation of the channels, is a valuable design
problem for the future work. Note that in Fig. 4, we also
show the tightness of the lower bound in (4) for the 3-C
fast adaptation scenario. We record the bound 𝛾LB for the
scheduledusers corresponding to its selected feedback set,
with (6) as the numerator. Then we average over log(1+𝛾LB)
with the recorded 𝛾LB to get the curve.
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𝔼{𝛾𝑘} ≥ 𝔼
{∥h𝑘w𝑘∥2

}
𝑧𝑘𝑁𝑡

𝑃𝐵
+

(
𝔼

{
sin2 𝜃� 𝑘

𝑘

} ∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2 + ∑

𝑏′ /�� 𝑘

∥h
(𝑏′)
𝑘 ∥2

) ∑
𝑗�=𝑘

𝔼 {∥g̃𝑘w𝑗∥2}
(13)

=
𝔼
{∥h𝑘w𝑘∥2

}
𝑧𝑘𝑁𝑡

𝑃𝐵
+

(
𝔼

{
sin2 𝜃� 𝑘

𝑘

} ∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2 + ∑

𝑏′ /�� 𝑘

∥h
(𝑏′)
𝑘 ∥2

) ∑
𝑗�=𝑘

1
𝑁𝑡�� 𝑐�� 1

(14)

≥ 𝔼
{∥h𝑘w𝑘∥2

}
𝑧𝑘𝑁𝑡

𝑃𝐵
+ 2

� 𝐵
𝑁𝑡∣ℱ𝑘∣−1

∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2 + ∑

𝑏′ /�� 𝑘

∥h
(𝑏′)
𝑘 ∥2

, (15)

V. CONCLUSION

In this paper, we have proposed a CSI feedback adaptation
scheme for clustered network MIMO coordination. Based on
the analysis for the impact of quantized CSI feedback on
network MIMO, the optimal set of BSs, with respect to which
the CSI is quantized and fed back, is determined by each user
in a distributed way. Simulation results show that network
MIMO is extremely sensitive to CSI error and could perform
even worse than no BS coordination under limited feedback,
while the proposed scheme guarantees the substantial gain
of network MIMO under various feedback budgets and is
robust to rapid channel variation. For future work, we will
also consider joint feedback and BS clustering adaptation [18]
for network MIMO systems.

VI. APPENDIX: PROOF OF THEOREM 1

Proof: Let cos 𝜃� 𝑘

𝑘 = ∥h̃� 𝑘

𝑘 ĥ� 𝑘 �
𝑘 ∥, then 𝜃� 𝑘

𝑘 is the angle
between ĥ� 𝑘

𝑘 and h̃� 𝑘

𝑘 . Denote h� 𝑘
as the variation to h𝑘

that replaces the dimensions of BSs outsideℱ𝑘 with 0, and
denote h ¯� 𝑘

= h𝑘 − h� 𝑘
as the variation to h𝑘 that replaces

the dimensions of BSs in ℱ𝑘 with zero, as the example shown
in Fig. 1.

Decompose h̃� 𝑘

𝑘 = (cos 𝜃� 𝑘

𝑘 )ĥ� 𝑘

𝑘 + (sin 𝜃� 𝑘

𝑘 )g� 𝑘

𝑘 , where
g� 𝑘

𝑘 is a 1 × 𝑁𝑡∣ℱ𝑘∣ unit norm vector representing the
direction of quantization error, which is orthogonal to
ĥ� 𝑘

𝑘 . According to the description of the recovered 1 ×
𝑁𝑡∣ℬ𝑐∣ CDI vector ĥ𝑘 in section III-A, we have h� 𝑘

=

∥h� 𝑘

𝑘 ∥
(
(cos 𝜃� 𝑘

𝑘 )ĥ𝑘 + (sin 𝜃� 𝑘

𝑘 )g� 𝑘

)
, where g� 𝑘

is the 1 ×
𝑁𝑡∣ℬ𝑐∣ unit norm vector that equals g� 𝑘

𝑘 on the corresponding
dimensions of BSs in ℱ𝑘, and equals 0 elsewhere. Then

h𝑘 = ∥h� 𝑘

𝑘 ∥(cos 𝜃� 𝑘

𝑘 )ĥ𝑘 + ∥h� 𝑘

𝑘 ∥(sin 𝜃� 𝑘

𝑘 )g� 𝑘
+h ¯� 𝑘

. (10)

Denote g𝑘 = ∥h� 𝑘

𝑘 ∥(sin 𝜃� 𝑘

𝑘 )g� 𝑘
+h ¯� 𝑘

. Since g� 𝑘

𝑘 is orthog-
onal to ĥ� 𝑘

𝑘 , g� 𝑘
is orthogonal to ĥ𝑘. Also h ¯� 𝑘

is orthogonal
to ĥ𝑘. Hence g𝑘 is orthogonal to ĥ𝑘. With ZFBF, ĥ𝑘w𝑗 = 0,
𝑗 ∕= 𝑘, therefore

∥h𝑘w𝑗∥2 = ∥g𝑘w𝑗∥2 = ∥g𝑘∥2∥g̃𝑘w𝑗∥2, 𝑗 ∕= 𝑘, (11)

where g̃𝑘 is the normalized version of g𝑘, and ∥g𝑘∥2 =

sin2 𝜃� 𝑘

𝑘

∑
𝑏�� 𝑘

∥h
(𝑏)
𝑘 ∥2 +∑𝑏′ /�� 𝑘

∥h
(𝑏′)
𝑘 ∥2.

Here both g̃𝑘 and w𝑗 are unit vectors on the 𝑁𝑡∣ℬ𝑐∣ − 1
dimensional hyperplane orthogonal to ĥ𝑘. Moreover, since
w𝑗 is merely determined by ĥ𝑖, 𝑖 ∕= 𝑗, 𝑖 ∕= 𝑘 within

the hyperplane, also due to the fact that ĥ𝑖 are mutually
independent and do not have certain preference in direction5,
it is reasonable to consider that w𝑗 is isotropic within the
hyperplane and independent of g̃𝑘. As a result, from [11], we
have ∥g̃𝑘w𝑗∥2 ∼ 𝛽(1, 𝑁𝑡∣ℬ𝑐∣ − 2), 𝑗 ∕= 𝑘, where 𝛽(𝑥, 𝑦) is a
Beta-distribution random variable with parameters (𝑥, 𝑦), then

𝔼w𝑗

{∥g̃𝑘w𝑗∥2
}
=

1

𝑁𝑡∣ℬ𝑐∣ − 1
. (12)

Finally, given h𝑘, the expected SINR over ĥ𝑘 and w𝑗 at
user 𝑘 is given by Eq.(13)-(15), where (13) follows from
Jensen’s inequality and (11). Eq. (14) follows from (12). Eq.
(15) follows from the results in [11] that a tight upper bound
for 𝔼

{
sin2 𝜃� 𝑘

𝑘

}
is 2� 𝐵/(𝑀 � 1), where 𝑁 = 2𝐵 and 𝑀 is

the number of transmit antennas. This completes the proof.
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