
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 1

Minimum Bandwidth Reservations for Periodic
Streams in Wireless Real-Time Systems

Jun Yi, Christian Poellabauer, Senior Member, IEEE, Xiaobo Sharon Hu, Senior Member, IEEE,
and Liqiang Zhang, Member, IEEE

Abstract —Reservation-based (as opposed to contention-based) channel access in WLANs provides predictable and deterministic trans-
mission and is therefore able to provide timeliness guarantees for wireless and embedded real-time applications. Also, reservation-based
channel access is energy efficient since a wireless adaptor is powered on only during its exclusive channel access times. While scheduling for
Quality of Service at the central authority (e.g., base station) has received extensive attention, the problem of determining the actual resource
requirements of an individual node in a wireless real-time system has been largely ignored.
This work aims at finding the minimum channel bandwidth reservation that meets the real-time constraints of all periodic streams of a given
node. Keeping the bandwidth reservation of a node to a minimum leads to reduced energy and resource requirements and leaves more
bandwidth for future reservations by other nodes. To obtain a solution to the minimum bandwidth reservation problem, we transform it to a
generic uniprocessor task schedulability problem, which is then addressed using a generic algorithm. This algorithm works for a subclass
of priority-driven packet scheduling policies, including three common ones: fixed-priority, EDF, and FIFO. Moreover, we then specialize the
generic algorithm to these three policies according to their specific characteristics. Their computation complexities and bandwidth reservation
efficiencies are evaluated and guidelines for choosing scheduling policies and stream parameters are presented.

Index Terms —Bandwidth reservation, schedulability test, earliest deadline first, fixed-priority, first-in-first-out, medium access control, real
time, wireless

✦

1 INTRODUCTION

Wireless embedded real-time systems are becoming preva-
lent with the continuous increase in streaming applica-
tions such as video/audio communications, industrial au-
tomation, networked and embedded control systems, and
wireless sensor and actuator networks. This has called for
research efforts to enhance the support of timeliness and
Quality of Service (QoS) in wirelessly networked embedded
environments. Wireless networks are inherently broadcast
and media-shared. Contention-based media accesses such
as CSMA are non-deterministic and thus incapable of pro-
viding predictable QoS support to periodic communications
often found in wireless real-time systems. Moreover, multi-
ple nodes are active simultaneously and continuously sense
and contend for the shared media, leading to excessive
energy consumption.

Recently, reservation-based channel access protocols that
explicitly allow wireless devices to negotiate channel access
intervals have been receiving increasing attention. Such
access mechanisms allow for contention-free and exclusive
accesses, providing deterministic bounds on the delays

• J. Yi, C. Poellabauer, and X.S. Hu are with the Department of Computer
Science and Engineering, University of Notre Dame, Notre Dame, IN, 46556.
E-mail: {jyi, cpoellab, shu}@nd.edu

• L. Zhang is with the Department of Computer and Information Sciences,
Indiana University, South Bend, 46634.
E-mail: liqzhang@iusb.edu

This work is supported in part by NSF under grant numbers CNS-0834180,
CNS-0720457, CNS-0834230, and CPS-0931195.

experienced by the traffic streams and conserving energy
(since wireless adaptors having no channel access can be
temporarily powered down). Therefore, such access mech-
anisms are ideally suited for providing real-time services in
wireless environments. For example, in ad-hoc networks,
coordinated sleep mechanisms have been designed [1] to
allow wireless devices to coordinate medium access with
their neighbors and to reduce their energy requirements.
Similarly, in infrastructure-based systems, wireless end de-
vices can coordinate medium access with base stations (BSs)
using protocols such as IEEE 802.11e [2].

Reservation-based channel management requires each
node to negotiate its desired channel access duration for
a given period based on its traffic constraints. However,
the computation of such requirements has largely been
ignored which has often resulted in poor real-time support,
overprovisioning of valuable resources, and poor scalability.
The goal of this work is to develop a strategy for the
computation of the required channel access reservations
for a given packet scheduling policy, such that (i) the real-
time constraints of each node’s traffic are satisfied and (ii)
resource reservations are minimized.

To solve the minimum bandwidth reservation problem
at a given node, we treat the complement of the periodic
bandwidth reservation as a special periodic stream (the
periodic sleep stream), i.e., the bandwidth reservation per
channel access period is equal to the complement of the
execution time (sleep time) of the sleep stream with period
equal to the channel access period. We add the sleep stream

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 2

to the original stream set to form an extended stream set.
Accordingly, the scheduling policy for the extended stream
set is extended from the original scheduling policy for the
original stream set such that (a) the sleep stream always
has the highest priority and is non-interruptible and (b)
the priority relationship among the original stream set is
unchanged. As a consequence, we transform the minimum
bandwidth reservation problem to the maximum sleep time
problem. In other words, there exists a schedule for the
original stream set with a given scheduling policy if and
only if there exists a schedule for the extended stream set
using the extended scheduling policy. Therefore, minimiz-
ing the bandwidth reservation is equivalent to maximizing
the sleep time of the sleep stream.

Based on supply/demand analysis, we develop a generic
algorithm to compute the maximum sleep time for a sub-
class of priority-driven packet scheduling policies, includ-
ing three common ones: fixed-priority (e.g., RM and DM),
EDF, and FIFO. This subclass exhibits two properties: (1) the
scheduling policy is static at the job level but can be either
static or dynamic at the task level and (2) the scenario of
the worst-case response time of the stream set occurs within
the synchronous (in-phase) busy interval of the stream set,
i.e., if all stream instances released within this interval
meet their deadlines, then all stream instances will meet
their deadlines everywhere. The generic algorithm is fur-
ther modified to provide customized (improved) solutions
for each of the three common policies according to their
individual characteristics.

The main contributions of this paper are (1) the trans-
formation of the problem of periodically reserving a time
interval of minimum length to serve all real-time streams of
a node (a problem in the network community) into a dual
problem on a dedicated resource (a problem in the real-
time scheduling community); and (2) present an alternative
solution as in [3] to this problem by applying an augmented
supply/demand analysis on the transformed problem in an
efficient manner. The resulting solution is general, efficient,
and of practical use.

The remainder of this paper is structured as follows.
We discuss related work in section 2. In section 3 we
present the generic traffic model, the network access model,
and the problem this paper is investigating. The model
transformation is presented in section 4. Then, the generic
algorithm of the minimum bandwidth reservation problem
is presented in section 5, and its refinements for fixed-
priority policies (section 5.2), EDF (section 5.3), and FIFO
(section 5.4) are given subsequently. In section 6, we present
simulation results for various stream configurations under
various packet scheduling polices. Finally, we conclude this
paper in section 7.

2 RELATED WORK

Scheduling and schedulability analysis have been exten-
sively studied in previous work, particularly for processing

resources. In networking environments, reservation-based
mechanisms are becoming highly prominent in supporting
latency-critical and energy-aware traffic. In this section, we
discuss existing protocol standards and techniques related
to resource and channel access reservations.

A well-known wireless standard that offers channel ac-
cess reservations is the IEEE 802.11e protocol [2]. The
IEEE 802.11e standard proposes a Hybrid Coordination
Function (HCF) that provides both contention-based and
contention-free channel accesses through two modes: the
Enhanced Distributed Channel Access (EDCA) and the
HCF Controlled Channel Access (HCCA) [2]. With HCCA,
the Hybrid Coordinator (HC), which usually resides at
the base station, continuously polls every node. TXOPs
(Transmit Opportunities) are assigned by the HC to a node
at a regular interval and for a specified duration, which are
determined based on the node’s traffic specification. The
research results reported in this work can be applied to the
HCCA mode to help each node reserve the smallest amount
of bandwidth necessary to meet all packet deadlines.

RI-EDF [4] is a table-driven, slotted reservation protocol
based on earliest-deadline first (EDF). It uses the periodic
nature of traffic in a fully connected network to deduce a
shared packet transmission schedule. Packets are transmit-
ted during their allocated slots, thus avoiding contention.
Traffic from the same node is interspersed into discrete
slots. In contrast, our reservation model reserves a continu-
ous time interval for every individual node and nodes only
wake up during their allocated intervals.

An earlier work studying the same problem [5] relies
on several strong assumptions. It assumes that (1) the
channel access period is smaller than every stream period,
(2) datagram deadlines must be equal to or less than their
respective periods, and (3) datagrams must be transmitted
consecutively and without interruption. Also, the work
implicity assumes that the underlying scheduling policy is
FIFO. Although it has a linear complexity, it over-reserves
bandwidth in general cases. This paper removes these re-
strictions, takes into account the impact of different schedul-
ing policies on the computation of the required bandwidth,
and presents algorithms for several scheduling policies to
efficiently compute the minimum bandwidth reservation,
although at the cost of higher complexity compared to [5].
However, even with increased complexity, the presented
algorithms are practical considering that the computational
capacity of wireless end devices continuously increases
and that a wireless end device usually has only a limited
number of concurrent real-time streams.

In this work, we transform the minimum bandwidth
reservation problem to the maximum sleep time problem,
which is then solved by computing the schedulable execu-
tion time of the sleep stream for a subclass of scheduling
policies, including fixed-priority, EDF, and FIFO. A similar
approach has been taken in [6] to solve the minimum EDF-
feasible deadline problem of a given task, given its period

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 3

and execution time.

There exist a lot of efforts on exact schedulability tests
for various scheduling policies, e.g., fixed-priority [7], [8],
[9], EDF [10], [11], [12], [13], and FIFO [14]. Our generic
algorithm for the bandwidth reservation problem is based
on the time-demand analysis techniques provided by these
earlier research results, but applied to a new problem.

Our work is also closely related to previous work on re-
source partition/composition models, which usually focus
on processor resources in real-time systems. Such models
include the static resource partition model [3], the bounded
delay resource partition model [3], [15], [16], the periodic
resource model [17], [18], and the explicit deadline periodic
resource model [19], [20]. These prior efforts differ from
each other mainly in the chosen scheduling model. The
resource partition/reservation model used in this paper cor-
responds to the single time slot periodic partition (STSPP)
model (a special case of the static resource partition model)
introduced in [3].

The schedulability test scheme for the STSPP model in
[3] can also be used to solve the problem, by iteratively
executing the schedulability test algorithm proposed in [3]
(similar to a binary search). Therefore, this approach would
be very costly. It is particularly inefficient for the fixed-
priority policy since the change of the resource supply
and the change of job response times are non-linear and
irregular. Our algorithm augments the traditional time-
demand analysis to compute the finished/unfinished por-
tion before a job’s deadline, which avoids computing fixed-
point equations iteratively. As a result, our solution to
the reverse problem (the minimum resource requirement
problem) has the same complexity as the original problem
(the exact schedulability test problem).

Besides resource partition/composition models, hierar-
chical schedulers (e.g., [21], [22]) can also provide tempo-
ral isolation among applications on a uniprocessor. This
property prevents a misbehaving task from interfering
with other tasks in another application, i.e., only the tasks
within the same application as the misbehaving one could
be affected. In hierarchical scheduling, each application is
composed of a set of correlating entities (e.g., tasks or
streams), where applications are scheduled by a global
scheduler and each application schedules its tasks using its
local scheduler. The approach proposed in this paper can
be applied to hierarchical schedulers, i.e., it can be used
to determine the minimum resource requirements of an
application, given this application’s local scheduling policy
(fixed-priority, EDF, or FIFO).

3 BANDWIDTH RESERVATION MODEL

This section presents our network access model, traffic
model, and the problem statement.

3.1 Network Access Model

We briefly discuss the concept of reservation-based channel
access model (which corresponds to the single time slot
periodic partition model introduced in [3]) since it forms
the basis for the problem we intend to solve. Such a
mechanism uses resource reservations to ensure contention-
free accesses. This is achieved through a central authority
at a base station (BS) that regulates the channel accesses of
individual nodes. Here, the BS takes control of the channel
and starts polling each of the nodes in a pre-determined
order (e.g., round-robin). Upon reception of a polling frame,
a node gains access to the channel. The HCCA mode
defined in the IEEE 802.11e standard [2] is an example
of a protocol which adopts the reservation-based channel
access approach to enhance the QoS support for real-time
applications in wireless environments.

Borrowing the terminology from the IEEE 802.11e stan-
dard, in a reservation-based channel access mechanism,
each node is provided a Service Period (SP), during which
the node has exclusive access to the wireless medium.
Polling frames issued by the BS specify the start time and
maximum duration of the SP allotted to a node. At the
end of an SP for a node, the BS begins polling the next
node in its schedule. The period of recurrence of the SP s
is referred to as the Service Interval (SI), which is usually
specified by the BS in advance and equal to a multiple of
the beacon interval of the BS shared by all client nodes. We
call the pair B = (SP, SI) the bandwidth profile of a node
(shown in Figure 1). The SP parameter at each node must
be negotiated with the BS based on the requirements of
the node’s expected real-time traffic. This reservation-based

SI

SP

SI

SP

Figure 1. A wireless device’s bandwidth profile (SP , SI). Shaded
intervals (SPs) are the exclusive access periods for a node, which
are repeated every SI time units.

channel access model is very practical and valuable in both
wireless local area networks (WLANs) and wireless sensor
networks (WSNs): a set of client nodes in a WLAN usually
share the same beacon period from the base station [2] and
a cluster of nodes in a WSN usually communicate with the
cluster head in a duty-cycled manner [23]. There are three
advantages of using STSPP in these network areas: (1) it
saves energy since nodes only need to wake up to commu-
nicate within their respective reserved time intervals; (2)
it leads to better latency predictability and possibly higher
throughput since wireless contention is avoided a priori;
(3) it greatly decreases the run-time complexity of resource
partition scheduling due to its simple partition structure.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 4

3.2 Traffic Model

We consider a set of wireless nodes with applications
on each node generating one or more periodic real-time
streams. Nodes connect wirelessly to a common BS to access
an external network. We denote the set of periodic streams
generated by a node as S = {S1, · · · ,Sn}. Each stream
Si periodically generates a certain number (worst-case or
average-case) of bytes (called a datagram) for a given
period pi for transmission. The datagram generated at the
beginning of the jth period of Si for transmission is denoted
as Ji,j . Wireless channel conditions are time-varying and
error-prone. The worst-case estimation (denoted as ei) of the
transmission time of a datagram of Si is needed, which has
been the focus of many prior efforts (e.g., in [5] and [24]).
Each datagram of Si has a relative transmission completion
deadline Di. The release time and deadline of Ji,j are
denoted as ri,j and di,j = ri,j + Di, respectively. Our
framework requires no specific relationship between stream
periods and datagram deadlines, i.e., Di can be less than,
equal to, or greater than pi. Due to the similarity between
the concept of tasks in the literature and the concept of
streams in this paper, we will use stream and task inter-
changeably in this paper. Similarly, the terms datagram and
job are also used interchangeably.

Datagrams are often fragmented at the network and/or
link layer, depending on the datagram size, network pa-
rameters (e.g., the maximum transfer unit or MTU), and
the scheduling policy. Therefore, a datagram can be also
treated as a logical conglomeration of a series of physical
packets. The maximum size of packets cannot be greater
than the MTU. When a packet is in flight, no other packet
can interrupt it. Therefore, the worst-case non-preemption
portion of a datagram is equal to the MTU. Since all streams
at the same node share the same MTU value, we set the
non-preemption portion of every stream to be the MTU
value and denote it as θ. Although packet interruption is not
allowed, interleaved transmissions of packets of a datagram
with other packets of other datagrams are allowed. For
example, when packet pkt1,1,1 from datagram J1,1 of stream
S1 finishes its transmission and a more urgent datagram
J2,1 from stream S2 arrives, the scheduler may need to
transmit packets from J2,1 before other packets from J1,1

(e.g., pkt1,1,2). As another example, after packet pkt1,1,1

finishes its transmission, the node’s allocated time interval
for network access is used up and the node is forced to
sleep. During the sleep duration, more urgent packets may
arrive at the network queue. When the network resource
is available again (after the sleep duration), the scheduler
may need to transmit these newly arrived urgent packets
before packets from J1,1. These interleaved transmissions
happen frequently since applications treat the network as
a dedicated resource and issue packets regardless of the
network reservation.

In this paper, we investigate the impact of traffic schedul-
ing policies on bandwidth reservation from the perspec-

tive of a single node. The policies under consideration
are a subclass of priority-driven polices, and we assume
there is a shared queue for all released packets. The
priority-driven scheduling policies under consideration in-
clude fixed-priority policies, e.g., rate/deadline monotonic
scheduling (RM and DM), and dynamic-priority policies,
e.g., EDF, and FIFO. All nodes in a WLAN (including the
BS) can use their own scheduling policies, i.e., we do not
impose restrictions on the choice of scheduling policy.

3.3 Problem Definition and Objectives

Each client node requests its desired bandwidth reservation
from the BS and the normalized bandwidth (i.e., the ratio of
SP to the given SI) of a node should be minimum as long
as all real-time streams meet their deadlines. Minimizing
the reserved bandwidth ensures that a node has the maxi-
mum amount of sleep time, thereby minimizing the energy
consumption of its wireless network card. From the per-
spective of the BS, the normalized bandwidth of each node
should be minimum as well so that the BS’s throughput
is maximized and the maximum amount of bandwidth is
available for potential future reservation requests of other
nodes. Therefore, the problem and objective can be stated
as:

Problem 3.1: Minimum Bandwidth Reservation (MBR).
Given a node’s set S = {Si}

n
1 of periodic streams, a fixed

service interval SI , and the node’s scheduling policy A,
determine the minimum SP such that all streams in S meet
their deadlines.
Note that in the MBR problem minimizing the SP value
is equivalent to minimizing the bandwidth (SP/SI) since
the SI value is given and fixed. Borrowing the scheduling
model concept from [17], where a scheduling model M =
(S, B, A) is defined as a tuple of a resource/bandwidth
partition model B, a scheduling algorithm/policy A, and
a workload model S, the scheduling model M of the MBR
problem can be denoted as (S = {Si}

n
1 , B = (SP, SI), A).

In particular, the resource partition model corresponds
to the single time slot periodic partition (STSPP) model
introduced in [3]. The MBR problem aims to obtain the
minimum SP value while all the other parameters of the
scheduling model M are given.

Normally, the SI value given to a node is a multiple
of the beacon interval of the BS [2]. The beacon interval
is determined by the application scenarios for which the
WLAN is deployed. Once bandwidth reservations are al-
located to nodes by the BS, a change of the SI value will
necessitate changes of all allocated bandwidth reservations
and trigger re-negotiations between the BS and all of its
nodes. A solution/algorithm to the problem can run at
each client node if the SI value is given from the BS
to the client node, or run at the BS if the client node
communicates all of its stream parameters to the BS. The
actual implementation choice depends on communication
and computation capacities of nodes and the BS.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 5

4 MODEL TRANSFORMATION

To approach the MBR problem, we first transform the
scheduling model M = (S = {Si}

n
1 , B = (SP, SI), A)

of the MBR problem to another scheduling model M ′ =
(S′, B′, A′), where the stream set S′ extends S by adding
a sleep stream; the scheduling policy A′ extends A by
assigning the sleep stream the highest priority; and B′

represents the dedicated resource allocation for S′. We show
that the two scheduling models are schedulably equivalent,
i.e., M is schedulable if and only if M ′ is schedulable. As a
corollary, we show that the MBR problem in M is a dual of
the maximum execution time problem of the sleep stream
in M ′.

We first define the sleep stream S0 as follows.

Definition 4.1: Sleep Stream. Given a bandwidth profile
(SP , SI), the corresponding sleep stream S0 is defined with
p0 = SI and D0 = e0 = θ0 = SI−SP , i.e., its period is equal
to the service interval SI ; its execution time and deadline
are invariantly equal and both are equal to the complement
portion of the allocated access interval SP , i.e., SI − SP .
Furthermore, the sleep stream cannot be interrupted (i.e.,
its non-preemption portion is equal to the execution time).

Figure 2 shows the transformation of the bandwidth
profile and the sleep stream. Since e0 is invariantly equal to

(a)

(b)

SI

SP

SI

SP

p0 = SI

e0 = D0 = SI-SP

p0 = SI

e0 = D0 = SI-SP

Figure 2. Transformation of the bandwidth profile and the sleep
stream: (a) A given bandwidth profile (SP , SI). (b) The correspond-
ing sleep stream S0 with D0 = e0 = SI-SP and p0 = SI . It always
has the highest priority and it is non-interruptible.

D0, S0 must have the higher priority than all data streams
and no data stream can block it. We define an extended
stream set S′ for S as follows.

Definition 4.2: Extended Stream Set. Given a set S =
{Si}

n
1 of periodic streams and a bandwidth profile (SP ,

SI), the extended stream set S′ is equal to the union of
the stream set S and S0, i.e., S′ = S ∪ S0 = {Si}

n
0 .

Moreover, the accompanying scheduling policy A′ for S′ is
defined as follows.

Definition 4.3: Extended Scheduling Policy. Given an ex-
tended stream set S′ and the scheduling policy A for S, the
extended policy A′ for S′ is an extension of A from S to S′,
in which S0 always has the highest priority and the priority
relationships among the streams in S are unchanged. In
other words, the restriction of A′ to S is equal to A, i.e.,
A′|S = A.

Now, we state the equivalent problem of MBR in terms
of A′ and S′:

Problem 4.4: Maximum Execution Time (MET). Given a
node’s set S = {Si}

n
1 of periodic streams, a service interval

SI , and the node’s scheduling policy A, determine the A′-
schedulable maximum execution time (which is invariantly
equal to the relative deadline) of S0 among the extended
stream set S′.

The scheduling model M ′ of the MET problem can be
denoted as M′ = (S′ = S ∪S0, B

′ = (SI, SI), A′). The MET
problem aims to obtain the maximum execution/sleep time
of the sleep stream S0 while all the other parameters of
the scheduling model M ′ are derived as described above.
Specifically, we observe that S′ is schedulable in M ′ if and

n

iSS 1}{ 01}{ SSS n

i

),(SISPB),(SISIB

A

)()()(

0:

0 ii SASASA

iA

equivalent

yschedulabl

M M

Figure 3. Schedulably equivalence between the original schedul-
ing model M = (S ,B, A) and the transformed scheduling model
M ′ = (S ′, B′, A′), where S0 is the sleep stream, B′ = (SI, SI)
represents dedicated resource allocation, and A′ is an extension
from A with S0 assigned the highest priority.

only if S is schedulable in M (as schematically shown in
Figure 3), leading us to the following theorem.

Theorem 4.5: M and M ′ are schedulably equivalent.

Proof: Since S0 has always the highest priority, re-
gardless of which priority-driven scheduling policy is in
use (i.e., once a job of S0 is released, it will be executed
immediately until its completion without interruption), the
schedule TA of S using policy A will be exactly the same
as the sub-schedule of S in the schedule TA′ of S′ using A′,
no matter what the values of SI and SP are. As a result,
S is schedulable using A if and only if S′ is schedulable
using A′.

As a corollary of Theorem 4.6, the MBR and the MET
are dual problems. Since the execution (sleep) time e0 of S0

is equal to SI - SP and the SI value is fixed, minimizing
SP is equivalent to maximizing e0. We state this conclusion
formally as

Corollary 4.6: The problem MBR on M and the problem
MET on M ′ are dual.

In the following sections, we will, based on the existing
exact uniprocessor task schedulability test and exploiting
the characteristics of the new scheduling model M ′, de-
velop our algorithms for a class of priority-driven schedul-
ing policies, including three common ones: fixed-priority
policies (e.g., RM and DM), dynamic-priority priorities (e.g.,
EDF), and FIFO.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 6

5 MINIMUM BANDWIDTH RESERVATION

A priority-driven scheduling policy (a set of priority rules)
can be considered as a time-varying function A(Ji,k,Jj,l, t)
for any two jobs Ji,k and Jj,l, taking on values -1, 0, and
1. Function A(Ji,k,Jj,l, t) = 1 (-1 and 0, respectively) if and
only if Ji,k has a higher (lower and equal, respectively)
priority than Jj,l at time t. A(Ji,k,Jj,l, t) is of form

A(Ji,k,Jj,l, t) =

1 t ∈ [ri,k, di,k] \ [rj,l, dj,l]

policy dependent t ∈ [ri,k, di,k] ∩ [rj,l, dj,l]

−1 t ∈ [rj,l, dj,l] \ [ri,k, di,k]

(1)

The symbol \ in Equation 1 is the set difference operator. We
describe processor idle intervals using a special task S−1. A
policy A is priority-driven if and only if (1) a backlogged
processor is not idle (i.e., A(Ji,k,J−1,l) = 1 for every job Ji,l,
where i 6= −1) and (2) the processor invariantly executes
the highest-priority backlogged job Ji,k at any time t (i.e.,
A(Ji,k,Jj,l, t) = 1 for every Jj,l 6= Ji,k).

In systems that use dynamic job-level scheduling, a data-
gram (a job) may consist of multiple packets, whose prior-
ities may be different from each other or they may change
over time. This, while adding flexibility, would significantly
add to the complexity of the network scheduler. Instead,
this work assumes that the network scheduler is job-level
static, i.e., all packets from the same datagram have the
same priority, which is assigned at the release time of the
datagram. We would like to point out that many priority-
driven scheduling policies (especially widely used ones
such as RM, DM, EDF, FIFO, LILO, and round-robin) satisfy
these constraints. Policies such as LST (least slack time)
do not fall into this category. In the following sections, we
restrict our focus to the class of priority-driven policies that
satisfy these constraints. Moreover, we require that for a
scheduling policy the synchronous (in-phase) busy interval
of any task set is the worst-case scenario, i.e., if all task
instances released within this interval meet their deadlines,
then all task instances will meet their deadlines everywhere.
A synchronous busy interval of the stream set starts with
all streams generating their datagrams at the same time
and ends with the transmission of the last one of these
datagrams. We state these two constraints discussed above
explicitly as follows.

• Job-level static. The scheduling policy is static at the
job level, but it can be either static or dynamic at the
task level.

• Critical instant. The worst-case response time of any
given stream set by a given scheduling policy occurs
within the synchronous (in-phase) busy interval of the
stream set.

5.1 Generic Framework

In this section, we develop a generic algorithmic framework
(Algorithm 1) to solve the MET problem, based on an

augmented time-demand analysis. In the following descrip-
tion, we distinguish between the finished portion and the
unfinished portion of execution before a given deadline. This
concept allows us to conservatively reduce the sleep time of
the sleep stream to approach its minimum value, assuming
that the reduced sleep time (equal to the unfinished portion)
is solely utilized by the job missing its deadline. To compute
the finished/unfinished portions of a job, we define a
generic time-demand function at every job release event
point. The available time at a job release event point for
lower-priority jobs is equal to the dedicated time supply
minus the generic time demand. As a result, the finished
portion of a job before its deadline is equal to, provided
it has not finished, the maximum available time over all
job release event points between its release time and its
deadline. Our approach avoids iterative computations of
fixed-point equations (which are usually found in existing
response time computations).

Algorithm 1 Minimum bandwidth reservation of stream set S ′

using policy A′

1: function MinBW():
2: /* e0 is initialized to the maximum value since the goal is to minimize

bandwidth over-reservation for S′ */
3: e0=D0=(1 −

∑

1≤i≤n
ei

pi
) ∗ SI

4: /* scan every job Ji,j ∈ Π (except the sleep job) in increasing order of
release times or deadlines, where 0 < i ≤ n and Π is the synchronous busy
interval starting at time 0 */

5: for each Ji,j within Π do
6: loop
7: compute the finished portion e+

i,j and unfinished portion e−i,j
using Equation 5 and Equation 6, and the completion time
fi,j using Equation 7

8: if e−i,j > 0 then
9: decrement the execution time e0 of S0 using Equation 2

10: else
11: Break
12: end if
13: /* abort when it is impossible to meet the job’s deadline even if the

node were allocated the entire bandwidth (i.e., SP =SI) */
14: if e0 < 0 then
15: Abort
16: end if
17: end loop
18: /* determine if the synchronous busy interval Π is terminated using

Equation 8 or whether it is impossible to meet the job’s deadline even
if the node were allocated the entire bandwidth (i.e., SP =SI) */

19: if v(fi,j) <= fi,j then
20: Break
21: end if
22: move on to check next job (other than the sleep job)
23: end for

24: return max{SI − e0 − θ, 0}

This framework scans every job (except jobs of S0) within
the synchronous busy interval Π to check if it meets its
deadline (lines 5-23). The timeliness check of the jobs of S0,
referred to as sleep jobs in the remainder of the paper, are
temporarily skipped until the synchronous busy interval
ends. However, their impact on the timeliness of regular
(non-sleep) jobs is still taken into account. Specifically, every
regular job must take into account all sleep jobs released

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 7

before its deadline since sleep jobs have the highest priority.
We consider the execution of each job Ji,j to be divided

into two distinct portions: the finished portion e+
i,j and the

unfinished portion e−i,j before the deadline di,j . According to

this definition, we have ei,j = e+
i,j + e−i,j . Job Ji,j meets its

deadline if and only if e−i,j = 0 or equivalently e+
i,j = ei,j .

If job Ji,j misses its deadline, the execution time e0 will be
reduced such that the total amount of reduced execution
times of all sleep jobs before di,j is equal to e−i,j , i.e.,

e−i,j =

⌊

di,j

SI

⌋

e0 + min{di,j‖SI, e0}

−

⌊

di,j

SI

⌋

(e0 − δ) − min{di,j‖SI, e0 − δ} (2)

where δ is the amount by which e0 needs to be reduced. In
Equation 2, ‖ is the modulus operator. Equation 2 computes
the total sleep time before deadline di,j that S0 can obtain

prior to and after the sleep time deduction, i.e.,
⌊

di,j

SI

⌋

e0 +

min{di,j‖SI, e0} and
⌊

di,j

SI

⌋

(e0 − δ) + min{di,j‖SI, e0 − δ},

respectively. In this manner, the algorithm conservatively
expects the total reduced amount to be solely utilized for
the execution of the unfinished portion e−i,j . The reduction
procedure ends when the job’s deadline is met or the algo-
rithm aborts when even supplying the entire bandwidth
(i.e., SP=SI) cannot meet the job’s deadline. If job Ji,j

meets its deadline, the algorithm moves on to the next job
until the busy interval Π is terminated.

Figure 4 illustrates the computation of the finished por-
tion, unfinished portion, and completion time of job Ji,j .

In order to compute the two distinct portions for a job,
we resort to the time-demand analysis of the job. The time-
demand wi,j(t) of job Ji,j at time t is defined as the sum
of aggregated execution times of all jobs released before t
with higher or equal priority than Ji,j and the maximum
non-preemption portion θ, as in [11]:

wi,j(t) =
∑

A′(Jk,l,Ji,j ,t)≥0

{ek} + θ (3)

Note that the generic time-demand function defined in
Equation 3 is a generalization of the traditional time-
demand function for either FP or EDF. The time-demand
function at time t for a task for an FP scheduling algorithm
is defined as the sum of execution times of jobs (released
before t) of higher-priority tasks. The time-demand function
at time t for the EDF scheduling algorithm is defined as the
sum of execution times of jobs whose deadline is no greater
than t. Since a job can only be delayed by at most θ time
units (i.e., the non-preemption portion) by a priority-driven
policy, we add this value to the time-demand function
in Equation 3. Notice that function wi,j(t) is a staircase
function, which jumps at release times {t0, t1, · · · tm}, where
tk < tk+1, t0 = ri,j , and tm ≤ di,j for all tk, of jobs with
priority no less than Ji,j . The value of wi,j(tk) corresponds

to the value right before the jump at time tk. The compu-
tation of the staircase function is different from that of the
conventional staircase time-demand function [25], [26], [9],
where it may jump at any time point depending on the
pattern of the stream set. The conventional staircase time-
demand function has been designed solely for computing a
job’s response/completion time, whereas our staircase func-
tion can, besides computing a job’s response/completion
time if the job’s deadline is met, compute a job’s finished
and unfinished portion before its deadline and determine
if a busy interval is terminated (with the help of the
additional line g(t) in Figure 4). Specifically, we denote
the union of {t0, t1, · · · tm} and di,j as event points Ei,j

= {t0, t1, · · · tm} ∪ di,j of Ji,j . Job Ji,j has a chance to be
executed before t ≤ di,j if and only if there exists some
s ≤ t such that wi,j(s) is less than s + ei,j . As shown in
Figure 4, function wi,j(t) and the vertical straight lines t,
where t ≤ di,j , intersect the 45◦ straight line translated
upwards by ei,j (i.e., the straight line g(t) in Figure 4) and
form isolateral right triangles. The amount of time which
Ji,j can utilize before t ≤ di,j (denoted as ei,j(t)), can be
computed as

ei,j(t) = min{ei,j, max
ri,j≤s≤t≤di,j

{0, ei,j + s − wi,j(s)}} (4)

which corresponds to the maximum length of the vertical
legs of those triangles contained within the two straight
lines g(t) and f(t) in Figure 4. Since function ei,j(t) is
bounded, non-decreasing, and obtains local maximums
only at event points Ei,j , the finished portion e+

i,j (i.e.,

ei,j(di,j)), and the unfinished portion e−i,j are computed as
follows.

e+
i,j = min{ei,j, max

tk∈Ei,j

{0, ei,j + tk − wi,j(tk)}} (5)

e−i,j = ei,j − e+
i,j (6)

If job Ji,j meets its deadline, as indicated by the staircase
function wi,j(t) intersecting the 45◦ straight line f(t) in Fig-
ure 4(a), its completion time fi,j is equal to the fixed point t
such that wi,j(t) = t. Alternatively, it is also equal to wi,j(tk)
where tk is the first event point satisfying tk −wi,j(tk) ≥ 0,
i.e.,

fi,j = wi,j(tk) (7)

where tk = argmintl∈Ei,j
{tl − wi,j(tl) ≥ 0}

As a byproduct, we can save substantial computation for
the completion time by iteratively solving the fixed-point
equation wi,j(t) = t, which is the usual practice in the
literature. Therefore, the algorithm can compute every job’s
response time along its finished and unfinished portion, if
the job’s deadline is met. Otherwise, the completion time is
undefined.

Relying on the computation of completion times, we can
decide if the synchronous busy interval Π is terminated,
via constructing another time-demand function v(t) called

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 8
�
��

�
��
�
�
�
�
�

)(, tw ji

�
��

�
��
�
�
�
�
�

)(, tw ji
ttf =)(

jiettg ,)(+= jiettg ,)(+=

ttf =)(

0 jif , jidt ,5 =jirt ,0 = 1t 2t 3t 4t

	�

jie ,

1t 2t 3t 4t

	�

jie ,

0
time time

t t
jidt ,5 =jirt ,0 =

Figure 4. An illustration of the augmented time-demand analysis to compute the finished portion e+

i,j , unfinished portion e−i,j , and
completion time fi,j of job Ji,j , given a priority-driven scheduling policy A′. Job Ji,j is released at t0 = ri,j and {tk}

4
k=1 are release

times of jobs with higher priority than Ji,j within [ri,j , di,j], The time-demand function wi,j(t) jumps at every release time. The amount
of time that Ji,j can utilize before ri,j ≤ t ≤ di,j is ei,j(t). Its value corresponds to the maximum length of the legs of these isolateral
right triangles (shown shaded in the graph) contained within the two straight lines g(t) and f(t) within time range [ri,j , t]. It is bounded,
non-decreasing, and obtains local maximums only at event points Ei,j = {tk}

4
k=1 ∪ di,j . The maximum value of ei,j(t) (i.e., ei,j(di,j)) is

equal to e+

i,j . In part (a), e+

i,j = ei,j , job Ji,j completes at time fi,j before its deadline. In part (b), e+

i,j < ei,j and therefore job Ji,j has not
completed before its deadline.

overall time-demand function. Function v(t) represents the
total demand time for all jobs, regardless of their priorities,
released before time t, i.e.,

v(t) =
∑

rk,l<t

{ek} + θ

=
∑

0≤k≤n

⌈

t

pk

⌉

ek + θ (8)

If v(fi,j) ≤ fi,j (line 19 in Algorithm 1), then evidently Π is
terminated before or at fi,j .

Finally, we consider the non-preemptive portions of tasks.
Sleep jobs should not be blocked by any regular jobs, but
it can happen if a regular job is released within less than θ
time units before a sleep job. In the worst case, a sleep job
can be blocked by regular jobs by θ time units. Therefore,
after the synchronous busy interval terminates, the algo-
rithm additionally deducts θ time units from the sleep time
of S0 (line 24 in Algorithm 1), which is equivalent to adding
bandwidth reservation of θ to the result regardless of the
non-preemptivity of S0.

We state the correctness and the exactness of Algorithm 1
as a theorem:

Theorem 5.1: For any periodic stream set and any job-
level static scheduling policy under which the scenario

of the worst-case response time is the synchronous busy
interval, the bandwidth minBW computed by Algorithm 1,
if successfully terminated, is the exact minimum bandwidth
requirement of the stream set.

Proof: We first show that Algorithm 1 (lines 5-23) resem-
bles the exact schedulability test [9], [27], [11], [12]. Initially,
the bandwidth reservation (thus sleep time of S0), is set to
the theoretical lower bound (line 3). If there is no deadline
miss within the synchronous busy interval, then this initial
bandwidth reservation is the exact minimum bandwidth
requirement. Once a job misses its deadline (lines 8-12), the
minimum total amount (equal to the unfinished portion of
the job) of the sleep time is deducted on the hypothesis
that the deducted amount of time before the job’s deadline
is solely utilized by the job (Equation 2). Thus, Algorithm 1
never over-deducts the sleeping time of S0. As a result, the
job will finish at a time before its deadline, but as late as
possible. This completely resembles the exact schedulability
test.

Sleep jobs of S0 can be blocked, in the worst case, by
regular jobs by θ time units. This can be considered by
increasing the bandwidth reservation by θ time units (line
23). If the final resulting bandwidth reservation is less than
zero, then S0 does not exist. Thus, we prove this theorem.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 9

Although the generic algorithm can solve the MET prob-
lem (thus the MBR problem), it incurs unnecessary over-
heads for some specific scheduling policies. Therefore, the
following sections investigate some simplifications for three
common scheduling policies by exploiting their individual
properties.

5.2 Fixed-Priority

The priority rule of a fixed-priority scheduling policy A is
static at stream level, i.e., the second case of Equation 1
is not time-varying. Suppose that streams are indexed in
the decreasing order of their priorities, i.e., stream Si has
a higher priority than Sk if i < k. We denote the subset
of streams with equal or higher priority than Si as Πi. The
finished portions and completion times of jobs of stream
Si are only affected by jobs of stream Sk, where k < i.
Therefore, the time-demand function wi,j(t) (Equation 3)
can be customized to

wi,j(t) = jei + θ +

i−1
∑

k=0

⌈

t

pk

⌉

ek

for (j − 1)pi < t ≤ wi,j(t) (9)

and the computation of the finished/unfinished portion
(Equation 5) can be customized to

e+
i,j = (10)

min{ei,j , max
ri,j≤rk,l≤di,j ∩ k<i

{0, ei,j + rk,l − wi,j(rk,l)}}

based on the generic schedulability test of a fixed-priority
policy in [9]. As discussed before, wi,j(t) in Figure 4 jumps
at the release times of streams with higher priorities than
Si. Since the timeliness of a stream cannot be affected by
streams with priorities lower than the stream, not every
released job of the stream within the synchronous busy in-
terval needs to be checked. Only jobs within a synchronous
busy interval Πi must be checked [9]. A synchronous busy
interval Πi starts at an instant when (i) all jobs in Πi released
before this instant have completed and (ii) every stream in
Πi releases a job at this instant. The interval ends with the
completion of all released jobs in Πi.

5.3 EDF

In EDF, jobs with priorities higher than the priority of a
job Ji,j are those whose deadlines are no later than di,j ,
and therefore they will be executed before di,j . Thus, the
time-demand function (Equation 3), finished/unfinished
portion function (Equation 5), and completion time function
(Equation 7) can be customized as follows.

w(t) =
∑

0≤k≤n

⌊

t + pk − Dk

pk

⌋

ek + θ (11)

e+
i,j = min{ei,j , max{0, w(di,j) − di,j}} (12)

fi,j = w(di,j) (13)

which are the same as in [11] and [12]. The jobs released
within (ri,j , di,j] with higher priorities than Ji,j are those
whose deadlines are also within (ri,j , di,j]. Since these jobs
will complete within (ri,j , di,j] using the EDF policy, their
demand times are equal to their actual execution times.
Therefore, they have no impact on the finished or unfin-
ished portions of Ji,j . As a result, the unfinished portion
e−i,j of Ji,j is equal to the difference between the demand
time w(di,j) at di,j and the deadline di,j itself.

We can also check jobs in the order of their deadlines,
rather than their release times. A benefit of this is that the
completion time of a job Ji,j is equal to the time-demand
w(di,j) at di,j . If e−i,j > 0, the sleep time of S0 must be
deducted to compensate for it. Since Ji,j will use up all
the deduction, iterative checking of deadline misses is not
necessary. Furthermore, if all jobs released before w(di,j)
are completed, then the synchronous busy interval Π is
terminated. In other words, if the release time of the next
job to be analyzed is no less than w(di,j), Π terminates.
Other refinements, e.g., conditionally skipping over some
jobs within the synchronous busy interval [28], can be used
to further improve the algorithm.

5.4 FIFO

In FIFO, only jobs released no later than job Ji,j have
higher priority than Ji,j . The time-demand function (Equa-
tion 3), finished/unfinished portion function (Equation 5),
and completion time function (Equation 7) can be cus-
tomized as:

wi,j =
∑

0≤k≤n

⌈

ri,j

pk

⌉

ek + θ (14)

e+
i,j = min{ei,j , max{0, wi,j − di,j}} (15)

fi,j = wi,j (16)

The time-demand function is a constant function within
[ri,j , di,j]. Reflecting on the shape of wi,j(t) in Figure 4, we
see that the function is a horizontal line. Furthermore, if
wi,j is greater than di,j , the unfinished portion e−i,j can be
compensated by the reduction of the sleep time of S0. In
particular, the total reduced amount of sleep times of all
jobs of S0 released before di,j is equal to e−i,j .

6 RESULTS AND PERFORMANCE

This section describes a set of simulation experiments that
have been conducted to evaluate the over-reservation ra-
tio of bandwidth and the computational overhead of our
algorithm under typical application scenarios using four
different scheduling policies (EDF, FIFO, RM, and DM).
These results can provide the system designer and admin-
istrator with guidance on which policy to choose in what
workload scenarios, also indicating how much bandwidth
would be wasted. The periodic streams are generated with
random parameters within given ranges and distributions.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 10

Moreover, we experimentally verify the correctness of our
algorithm using various test cases.

We use the approach recommended by [6] to generate the
task periods. To generate a feasible stream set of N periodic
stream with given total utilization U , we first generated
a random utilization Ui for each stream Ji uniformly dis-
tributed in (0, 1) and then normalized these utilizations to
have U=

∑

1≤i≤n Ui=
∑

1≤i≤n
ei

pi
. We also generated a stream

transmission time ei of stream Ji as a random variable uni-
formly distributed in [emin, emax] and calculated the period
of each stream as pi = ei/Ui. The relative deadline Di of
each stream Ji has been generated according to a random
variable Vi (validity) uniformly distributed in [Vmin, Vmax]
such that Di = pi ∗ Vi. We set the parameters to match

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

tim
e

in
 m

ill
is

ec
on

ds
 (

C
)

Number of periodic streams (N)

 Computation complexity (SI=100, U=0.2, V=[1, 3])

RM
DM

EDF
FIFO

Figure 5. Computation time on an Intel Core2 1.86GHz processor
while varying the number N of streams, given the service interval
SI=100, the uniform distribution of ratio of deadline to period V =[1,
3], and the total utilization U=0.2.

typical application scenarios in wireless local area networks.
The SI is set to 100 milliseconds, which is the default
beacon interval in IEEE 802.11 [2]. The range [emin, emax] of
datagram sizes is set to [1, 10] milliseconds, which allows a
stream Si to generate 1 to 5 packets within a single stream
period pi. Default values for N , U , and [Vmin, Vmax] are set
to 6, 0.2, and [1, 3], respectively. Moreover, we require that
the deadline of every generated task is no less than the
SI value since 1) the bandwidth for a task with deadline
less than the SI value is largely over-reserved, and 2) the
SI value in practice should be adjusted to be less than
the deadline value. Unless otherwise specified, we use the
above default parameters. The non-preemption portion is
set to 2 milliseconds. The graphs of all experiments depict
the average results over 1000 generated stream sets.

In the first set of experiments, we tested the compu-
tational overhead of the algorithm as a function of the
number of tasks (Figure 5). We measure the average finish
time for the computations on a laptop with an Intel Core2
1.86GHz processor. The algorithms for RM and DM closely
approximate the generic solution to bandwidth computa-
tion and therefore show larger running times than the other

scheduling policies. Moreover, the computation of the min-
imum bandwidth requirement is much more complicated
for FP than either EDF or FIFO, since a job’s response time
is irregular in reaction to the change of resource supply.
FIFO and EDF have lower computational overheads since
their computations are extremely simplified compared to
the generic algorithm. However, bandwidth computations
are infrequent events (e.g., when a new stream joins or
leaves), therefore the computational overhead is typically
not very significant.

In another set of experiments, we studied the bandwidth
over-reservation ratios under various scheduling policies
for various stream sets. The over-reservation ratio E is
defined as the normalized ratio of the bandwidth reserva-
tion SP

SI
to the idealized minimum utilization U=

∑

1≤i≤n
ei

pi
.

That is,

E =
SP

SI ∗ U
(17)

Thus, E=1 means that all reserved bandwidth is used and
no bandwidth is wasted (i.e., there is no over-reservation).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
an

dw
id

th
 o

ve
r-

re
se

rv
at

oi
n

ra
tio

 (
E

)

Utilization of the periodic stream set (U)

FIFO
DM
RM

EDF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
at

io
 o

f s
uc

ce
ss

fu
l r

es
er

va
tio

ns
 (

Y
)

Utilization of the periodic stream set (U)

Efficiency of bandwidth reservation (SI=100, N=6, V=[1, 3])

EDF
DM
RM

FIFO

Figure 6. The percentage of successful reservations Y (a) and
the over-reservation ratio E (b) while varying the utilization U of the
stream set, given the service interval SI=100, a uniform distribution
of ratio of deadline to period V =[1, 3], and the number of periodic
streams N=6.

In order to demonstrate the correctness and accuracy of
our approach (Theorem 5.1), we compute the bandwidth
reservation (SP) using Algorithm 1 for every stream set,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 11

and then use the computed bandwidth reservation as a
given bandwidth profile (SP , SI) to simulate the packet
scheduling and transmission process for the same stream
set. The simulation reports no deadline misses. Further-
more, we then set the SP of the bandwidth profile (SP ,
SI) to a certain amount less than the SP computed by
Algorithm 1, and again simulate the packet scheduling
and transmission process. The result is that every such
simulation reported some deadline misses, indicating that
Algorithm 1 is able to determine the minimum necessary
bandwidth reservations.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 2 3 4 5 6 7 8

B
an

dw
id

th
 o

ve
r-

re
se

rv
at

oi
n

ra
tio

 (
E

)

Number of periodic streams (N)

Efficiency of the bandwidth reservation (SI=100, U=0.2, V=[1, 3])

FIFO
RM
DM

EDF

Figure 7. The over-reservation ratio E while varying the number
N of streams, given the service interval SI=100, the uniform
distribution of ratio of deadline to period V =[1,3], and the total
utilization U=0.2.

We measured the over-reservation ratio E as a function
of the total utilization U , the number of tasks N , and the
packet validity V (Figures 6, 7, 8). For each scheduling
policy, the reported ratio is averaged over all stream sets
that are schedulable by all four policies. In other words, if
a stream set is schedulable by one policy (e.g., EDF) but
not schedulable by another (e.g., FIFO), then we exclude
this stream set.

Figure 6 displays the over-reservation ratio (E) and the
ratio (Y) of successful reservations (i.e., Algorithm 1 does
not abort), respectively, over increasing utilization U . The
results show that FIFO has the worst performance with
respect to the two metrics: while the utilization is low it
extremely over-reserves its bandwidth (E is up to 2.05)
and as the utilization increases (U=[0.4, 1.0]) the ratio (Y)
of successful reservations decreases linearly. On the other
hand, EDF has the lowest reservation ratio and the highest
ratio of successful reservations. Figures 7, 8, and 9 show the
over-reservation ratio (E) as the number of streams N , the
validity V , and the service interval SI vary, respectively.
In Figure 7, as the number of streams decreases the over-
reservation ratio of RM, DM and FIFO decreases since any
unused resources have more opportunities to fit in a stream
as the number of streams increases. DM does not provide
many advantages over RM since relative deadlines of tasks

 1

 1.5

 2

 2.5

 3

 3.5

[0.5, 1.0] [1.5, 2.5] [2.5, 3.5] [3.5, 4.5] [4.5, 5.5]

B
an

dw
id

th
 o

ve
r-

re
se

rv
at

oi
n

ra
tio

 (
E

)

Ratio of deadline to period (V)

Efficiency of bandwidth reservation (SI=100, N=6, U=0.2)

FIFO
RM
DM

EDF

Figure 8. The over-reservation ratio E while varying the ratio V
of deadline to period, given the service interval SI=100, the total
utilization U=0.2 of the periodic task set, and the number of periodic
streams N=6.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 50 100 150 200 250 300 350 400

B
an

dw
id

th
 o

ve
r-

re
se

rv
at

oi
n

ra
tio

 (
E

)

SI

Efficiency of bandwidth reservation (N=6, U=0.2, V=[1, 3])

FIFO
RM
DM

EDF

Figure 9. The over-reservation ratio E while varying the SI
value provided by the BS, given a uniform distribution of ratio V
of deadline to period [1,3], stream set utilization U=0.2, and the
number of periodic streams N=6.

are all (much) greater than their respective periods, which
is typical in a wireless streaming environment. Changing
the number of streams has only a modest impact on EDF.
Similarly, Figure 8 shows that increasing validity V only
slightly affects the over-reservation ratio of EDF, whereas
it has a high impact on RM, DM, and FIFO. The over-
reservation ratios of FIFO, RM, and DM decrease rapidly
when the validity decreases from 0.5 to 3.5. However when
the validity decreases further (>4.5), the over-reservation
ratios of all policies stabilize and converge. Figure 9 shows
the impact of varying SI on the over-reservation ratio (E).
Increasing SI only slightly affects the over-reservation ratio
of EDF, but significantly impacts the over-reservation ratios
of RM, DM, and FIFO.

In summary, the results derived from the simulation
experiments reveal the following. (1) Increasing the validity
(ratio of deadline to period) can greatly increase the band-
width usage efficiency (less bandwidth waste) and increase

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 12

the probability of successful bandwidth reservation. Once
the minimum bandwidth computation aborts, the most
effective remedy is to increase the deadlines for some
streams. (2) When the validity is less than 4.5, EDF requires
less bandwidth reservation than either RM, DM, or FIFO,
whereas when the validity goes beyond 4.5, the advantage
of using complex scheduling policies diminishes and their
minimum bandwidth reservations converge. In this case,
FIFO works perfectly considering its low system overhead
and scheduling complexity. Similarly, decreasing the given
SI value has a similar effect as increasing the validity.

7 CONCLUSIONS AND FUTURE WORK

The benefits of reservation-based channel accesses are two-
fold: (1) they provide contention-free access within allo-
cated/reserved channel access intervals to meet timing
constraints predictably and (2) they allow a wireless radio
to be powered down when the channel is not needed.
Careless resource allocations may lead to poor support
for real-time traffic or over-provisioning of scarce network
resources. This paper solves the minimum bandwidth reser-
vation problem to allow all streams to meet their timing
constraints. To obtain a solution to the minimum bandwidth
reservation problem, we transform it to a generic unipro-
cessor task schedulability problem, which is then addressed
using a generic algorithm based on time-demand analysis.
The generic minimum bandwidth reservation algorithm
works for a subclass of priority-driven packet scheduling
policies, including three common ones: fixed-priority (e.g.,
RM and DM), EDF, and FIFO. Refinements of the generic
solution to these three types of policies are presented and
discussed as well. The simulation results show that the
generic algorithm is correct and practical in terms of com-
putation complexity. The proposed bandwidth reservation
scheme leads to minimal amounts of bandwidth waste if
appropriate scheduling policies and stream parameters are
selected for a given stream set. However, it also leads to
potentially large energy savings, while being simple to
implement and deploy. In our future work, we will address
(1) how the base station chooses the optimal SI value to
minimize the bandwidth/energy consumption of the entire
wireless local area network, (2) how different client nodes
use an SI which is a multiple of the beacon interval of the
base station, and (3) how reservations (SP s) of nodes with
different SIs can be composed efficiently to form a super
frame.

REFERENCES

[1] L. Wang and Y. Xiao, A survey of energy-efficient scheduling mech-
anisms in sensor networks, Mobile Networks and Applications, vol.
11, no. 5, pp. 723-740, 2006.

[2] IEEE 802.11 WG, Part II: Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications: Medium access control (MAC)
enhancements for quality of service (QoS), IEEE 802.11e Standard, Nov
2005.

[3] A. K. Mok, X. A. Feng, and D. Chen, Resource partition for realtime
systems, in Proceedings of the Seventh Real-Time Technology and
Applications Symposium. Washington, DC, USA, IEEE Computer
Society, 2001, p. 75.

[4] T. L. Crenshaw, S. Hoke, A. Tirumala, and M. Caccamo, Robust implicit
EDF: A wireless MAC protocol for collaborative realtime systems,
Transaction. on Embedded Computing Systems., vol. 6, no. 4, p. 28,
2007.

[5] D. Rajan, C. Poellabauer, X. S. Hu, L. Zhang, and K. Otten, Wire-
less channel access reservation for embedded real-time systems, in
Proceedings of the 7th ACM international conference on Embedded
software, Atlanta, GA, USA, 2008, pp. 129-138.

[6] H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson, Computing the
minimum edf feasible deadline in periodic systems, in Proceedings of
the 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Washington, DC, USA, 2006,
pp. 125-134.

[7] O. Redell and M. Torngren, Calculating exact worst case response
times for static priority scheduled tasks with offsets and jitter, in
Proceedings of the Eighth IEEE Real-Time and Embedded Technology
and Applications Symposium, Washington, DC, USA, 2002, p. 164.

[8] R. I. Davis, A. Zabos, and A. Burns, Efficient exact schedulability tests
for fixed priority real-time systems, IEEE Trans. Comput., vol. 57, no.
9, pp. 1261-1276, 2008.

[9] J. Lehoczky, Fixed priority scheduling of periodic task sets with
arbitrary deadlines, in Proceedings of the 11th Real-Time Systems
Symposium, December 1990, pp. 201-209.

[10] C. L. Liu and J. W. Layland, Scheduling algorithms for multiprogram-
ming in a hard-real-time environment, Journal of the ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[11] S. Baruah, A. Mok, and L. Rosier, Preemptively scheduling hardreal-
time sporadic tasks on one processor, in Proceedings of the 11th IEEE
Real-time Systems Symposium, December 1990, pp. 182-190.

[12] S. K. Baruah, L. E. Rosier, and R. R. Howell, Algorithms and complex-
ity concerning the preemptive scheduling of periodic real-time tasks
on one processor, Real-Time Systems, vol. 2, no. 4, pp. 301-324, 1990.

[13] F. Zhang and A. Burns, Schedulability analysis for real-time systems
with edf scheduling, IEEE Transactions on Computers, vol. 118, no. 1,
pp. 100-120, 2009.

[14] L. George and P. Minet, A FIFO worst case analysis for a hard real-
time distributed problem with consistency constraints, in Proceedings
of the 17th International Conference on Distributed Computing Sys-
tems, Washington, DC, USA, 1997, p. 441.

[15] X. A. Feng and A. K. Mok, A model of hierarchical real-time virtual
resources, in Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium. Washington, DC, USA, IEEE Computer Society, 2002, p. 26.

[16] A. K. Mok and X. A. Feng, Towards compositionality in realtime
resource partitioning based on regularity bounds, in Proceedings of
the 22nd IEEE Real-Time Systems Symposium. Washington, DC, USA,
IEEE Computer Society, 2001, p. 129.

[17] I. Shin and I. Lee, Periodic resource model for compositional real-time
guarantees, in Proceedings of the 24th IEEE International Real-Time
Systems Symposium. Washington, DC, USA, IEEE Computer Society,
2003, p. 2.

[18] I. Shin and I. Lee, Compositional real-time scheduling framework
with periodic model, ACM Trans. Embed. Comput. Syst., vol. 7, no.
3, pp. 1-39, 2008.

[19] A. Easwaran, M. Anand, and I. Lee, Compositional analysis frame-
work using edp resource models, in Proceedings of the 28th IEEE
International Real-Time Systems Symposium. Washington, DC, USA,
IEEE Computer Society, 2007, pp. 129-138.

[20] N. Fisher and F. Dewan, Approximate bandwidth allocation for
compositional real-time systems, in Proceedings of the 21st Euromi-
cro Conference on Real-Time Systems. Washington, DC, USA, IEEE
Computer Society, 2009, pp. 87-96.

[21] J. Regehr and J. A. Stankovic, HLS: A framework for composing
soft real-time schedulers, in Proceedings of the 22nd IEEE Real-Time
Systems Symposium, London, UK, Dec. 2001, pp. 3-14.

[22] F. Zhang and A. Burns, Analysis of hierarchical edf pre-emptive
scheduling, in Proceedings of the 28th IEEE International Real-Time
Systems Symposium. Washington, DC, USA, IEEE Computer Society,
2007, pp. 423-434.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 4, APRIL 2011 13

[23] W. Ye, J. Heidemann, and D. Estrin, Medium access control with co-
ordinated adaptive sleeping for wireless sensor networks, IEEE/ACM
Trans. Netw., vol. 12, no. 3, pp. 493-506, 2004.

[24] P. Puschner and A. Burns, A review of worstcase execution time
analysis, Real-Time Systems, vol. 18, no. 2, pp. 115-130, 2000.

[25] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
Applying new scheduling theory to static priority preemptive schedul-
ing, Software Engineering Journal, vol. 8, pp. 284-292, 1993.

[26] J. Lehoczky, L. Sha, and Y. Ding, The rate monotonic scheduling algo-
rithm: exact characterization and average case behavior, in Proceedings
of the 10th Real Time Systems Symposium, Washington, DC, USA,
1989, pp. 166-171.

[27] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ: Prentice
Hall, 2001.

[28] K. Albers and F. Slomka, Efficient feasibility analysis for realtime
systems with EDF scheduling, in Proceedings of the conference on
Design, Automation and Test in Europe, Washington, DC, USA, 2005,
pp. 492-497.

