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Abstract—Query execution assurance is an important concept in defeating lazy servers in the database as a service model. We show
that extending query execution assurance to outsourced databases with multiple data owners is highly inefficient. To cope with lazy
servers in the distributed setting, we propose query access assurance (QAA) that focuses on IO-bound queries. The goal in QAA is
to enable clients to verify that the server has honestly accessed all records that are necessary to compute the correct query answer,
thus eliminating the incentives for the server to be lazy if the query cost is dominated by the IO cost in accessing these records. We
formalize this concept for distributed databases, and present two efficient schemes that achieve QAA with high success probabilities.
The first scheme is simple to implement and deploy, but may incur excessive server to client communication cost and verification cost
at the client side, when the query selectivity or the database size increases. The second scheme is more involved, but successfully
addresses the limitation of the first scheme. Our design employs a few number theory techniques. Extensive experiments demonstrate
the efficiency, effectiveness and usefulness of our schemes.

Index Terms—Database as a service, database security, quality of services, query assurance, service enforcement and assurance.

✦

1 INTRODUCTION

Data are increasingly collected in a distributed fashion.
In such systems, data are generated by multiple clients
and forwarded to a central server for management and
query processing. We denote these systems as the out-
sourced databases with multiple data owners. Since data are
distributed in nature, we can also view such systems
as the outsourced distributed databases, and in short, the
distributed databases, as shown in Figure 1(a). The remote
access of the database inevitably raises the issue of trust,
especially when the server is provided as a service [14]
by a third party that clients may not fully trust, thus
brings the needs of auditing the query processing efforts
performed by the server.

There are two types of dishonest servers. A lazy server
[32] returns incorrect responses for saving his computa-
tion resources. The incentive is to provide services to
more clients or lower his operation cost. A malicious
server is willing to pay considerable amounts of efforts
(much more than honestly executing the query if neces-
sary) to manipulate the clients so that they will accept
wrong query results.

Not surprisingly, to guard against a malicious server
is much harder and more costly than defeating a lazy
server. In many practical applications, clients only need
to worry about a lazy server instead of a malicious
one. The choice of selecting a particular server’s service
has indicated a reasonable degree of trust between data
owners and the server, thus the chance that the selected
server has any malicious intent should be low. However,
the server still has plenty of incentive to be lazy to lower
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Fig. 1. Query access assurance in distributed databases.

his operation cost or save his computation resources [32].
An important result in defeating a lazy server is the query
execution assurance [32]. Formally, denote the amount of
work (computation and IO costs) that a server has to do
in honestly executing a batch of queries Q as WQ and
the correct query answers for Q as AQ, and let the actual
amount of work the server has paid for Q be W ′

Q and
the corresponding query results as A′

Q. Query execution
assurance is to ensure the followings. If a client accepts
A′

Q, then W ′
Q/WQ ≥ θ holds with a high probability,

where θ is some threshold value that is close to 1.
Sion [32] has designed an elegant scheme (based on

the ringers concept) that achieves the query execution
assurance in a single data owner model. It also needs the
assumption that queries are submitted in batches. The
core idea is to let the client execute a subset of queries
(from the batch to be submitted) locally and obtain their
answers first. Challenge-tokens, using some one-way,
collision resistant hash function, are then constructed
based on these answers. These tokens are submitted
together with the batch of queries and the server is
required to return, along with the query answers to all
queries, the query ids that produced these challenge-
tokens. We denote this scheme as the ringers scheme.
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Motivation. We can certainly apply the ringers scheme in
distributed databases to provide the query execution as-
surance. Unfortunately, there are some major limitations.
Firstly, it requires a client to submit his queries in a batch
that contains at least tens of queries [32]. This means a
client must delay and buffer his queries into a group
of sufficient size, which introduces latency that is not
desired and/or might not be feasible in time-sensitive
scenarios.

Secondly, to produce the challenge-tokens, the client
needs to obtain all data records that must be involved
in answering any query in the query batch. There are
two ways of addressing this issue. The first approach
is to assume that some query authentication techniques
(e.g., [16], [18], [19], [23], [25]) have been employed when
publishing databases to the server, and the queries in
the same batch only touch records from one common
segment of records in the database [32]. Given these
assumptions, the client can execute one range selec-
tion query to obtain and authenticate the required data
records for all queries in the same batch. The client then
randomly selects a few queries from the query batch
and these queries are executed on these records to pro-
duce challenge tokens. This assumption could be very
restrictive and incurs significant overheads for both the
client and the server, especially in distributed fashions
where ensuring the query authentication with multiple
data owners requires more expensive techniques and
special assumptions [22], [26]. In the worst case, the
entire database has to be transferred and authenticated
to the client to construct some challenge tokens.

When there is only a single data owner and the client
is the data owner himself, the second solution is to
ask the client to retain a copy of the database, thus
removing the needs to obtain and authenticate the raw
data records first before executing queries locally. In
distributed databases, each data owner’s database is
relatively small, hence it is reasonable to ask a client to
retain a copy of his database locally. However, since data
are distributed in multiple locations, collecting all data
records for answering queries exactly at one place still
incurs expensive communication cost.

Distributed data and the need of auditing a single
query make the task of realizing query execution as-
surance in distributed databases efficiently very difficult.
Given these challenges, our observation is that a large
number of queries are IO-bound, i.e., the dominant cost
when executing these queries is contributed by IOs.
Thus, a reasonable compromise in these cases is to verify
that the server has honestly accessed all data records that are
required to answer a query. Essentially, we seek efficient
solutions that can verify the data access pattern of the
server for a single query. We denote this problem as
the query access assurance problem. This problem is also
important when clients want to ensure that the server
has honestly retrieved all relevant records for general
search queries in distributed databases.

Problem Formulation. Formally, assume that m data
owners {s1, . . . , sm} forward their databases to the
server R. We focus on the case where the clients in the
system are data owners themselves. The general case
in which a client other than a data owner may request
a query is addressed in Section 4. The databases from
all clients conform to the same relational schema. For
a client si, his database Di is a collection of records
{ri,1, . . . , ri,ni

}. Without loss of generality, we assume
that clients have distinct records, i.e., for ∀i, j ∈ [1, m],
i 6= j, Di∩Dj = ∅. This is easily achievable by imposing a
primary key field idr. The server R maintains the union
of all databases, denoted as D, and answers queries from
clients, as shown in Figure 1(a). The number of records
in D is |D| = N (hence

∑m
i=1 ni = N ). In the sequel,

unless otherwise specified, |X | for a set X denotes the
number of elements in X .

A query q’s selection predicate defines a set of records
in every Di (and D) that satisfy its query condition.
Consider the following example in SQL: “select sum(A3)
from D where 10 ≤A1 ≤ 100 group by A2”. The selection
predicate of this query is A1 ∈ [10, 100] and it defines the
set of records that must be involved in order to produce
the final query result. For a database Di and a query
q, we denote this set of records as qi,t. We can apply
the same definition to the database D and define the
set qt as well. Obviously, qt = ∪m

i=1qi,t. We also define
ρq = |qt|/|D| as the query selectivity of q.

The client expects a query answer A′
q for q and an

evidence χq that R has honestly accessed all records in qt.
Let the actual set of records from qt that R has accessed
to produce A′

q be qa, i.e., qa ⊆ qt. Formally,

Definition 1. Query Access Assurance [QAA]: For a query
q issued by a client si (i ∈ [1, m]), the server R should return
an answer A′

q with an evidence χq. The client si performs a
verification procedure V with χq that outputs either 0 or 1. If
qt = qa, then V(χq) = 1 always. If qt 6= qa, V(χq) = 0 with
a high probability δ (negatively correlated with |qa|/|qt|).

An example is shown in Figure 1(b), where s1 needs
to ensure that R has accessed all records in qt = {5, 7, 9}.
In general, the server may only need to access a small
subset of attributes for every record in qt to answer a
query q. To simplify the discussion, we assume that the
goal is to ensure that the complete content of the record
has been accessed for every record in qt and address the
above issue in Section 4.

A lazy server will try to reduce |qa| as much as
possible. Meanwhile, QAA may introduce overhead for
an honest server (to generate the evidence χq). Thus, it is
important to keep the overhead for the server in produc-
ing χq small, relatively to the query cost. In addition, the
following costs are also critical: the communication cost
among clients, and between the client and the server, the
computation cost for clients.

Our Contribution. We present efficient solutions to en-
sure query access assurance that guards against a lazy
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server in distributed databases for any single query
initiated by any client. Specifically,

• We first present a basic scheme (QAA-BSC) in Sec-
tion 2 with a simple construction and achieves a
high success probability. It has a small communica-
tion cost among clients and almost no query over-
head for the server. However, the server to client
communication cost and the client’s verification cost
become expensive when either ρq or N increases.

• To overcome the above limitation, we design an
advanced scheme (QAA-ADV) in Section 3. It uti-
lizes group generators to produce one-way, collision-
resistant, online permutations of indices for a set
of records. It then uses a novel, efficient algorithm
to map unique ids to unique primes on the fly.
The mapping is different for different queries. QAA-
ADV enjoys the same high success probability as
QAA-BSC. It introduces very small communication
overheads and some small computation costs.

• We show that both schemes are update-friendly and
address some other issues in Section 4.

• We illustrate the efficiency and effectiveness of our
schemes by extensive experiments in Section 5.

We survey other related works in Section 6 and
conclude the paper in Section 7. The frequently used
notations are summarized in Figure 2. In this work, the
log x operation by default refers to log2 x.

2 THE QAA-BSC SCHEME

The basic intuition in our design is to let a client
randomly sample a small subset of records qc from qt

for a query q by contacting a few other clients (and
himself). The server is required to provide a proof that
he has touched these sampled ones in answering q. An
honest server has to touch all records from qt, hence
these sampled records will be touched anyway. A lazy
server has no knowledge on how these samples were
selected, thus, he has to retrieve all records from qt to be
absolutely sure that he will not be caught.

The simplest realization of this idea is to require the
client to collect records into qc, and the server to return
all records from qt to the client, along with the query
response. However, such an approach is too expensive
communication-wise. On the other hand, simply sending
the ids or some pre-computed hash values for these
records, to save the communication cost, has serious
security loopholes. In this case, the server may utilize
an index structure to retrieve the ids or pre-computed
hash values (in main memory) for all records in qt, but
without reading the actual contents of any records. Our
design addresses these challenges.

2.1 The Scheme

Pre-processing of auxiliary information. Let the nth
prime as pn, e.g., p1 = 2. Before sending his database
to the server, each client augments each record in his

Symbol Description
m The number of data owners (clients).

si, Di , ni The ith client, its database and the number of records it owns.
ri,j The jth record of Di.
R, D The server and its unioned database for all Di’s.

N , |D| The number of records in D.
ρq Query selectivity.
qi,t The set of records involved to answer q in Di .
qt The set of records involved to answer q in D.
qa Actual set of records accessed by R to answer q in D.
χq Evidence that R has honestly accessed all records in qt .
pn The nth prime.
τ The number of unique primes attached to each record in QAA-BSC.

Cq Client’s challenge for q.
ωt, ωf The number of records in qc and q̄c.
βq A random bit sequence.

qc, q̄c Two small subsets of qt .
Pq , Pq̄ Two sets of primes (from qc and q̄c respectively) that define Cq .

P, ℓ The set P contains ℓ unique primes.

Ct
q , Cf

q Two products (based on Pq and Pq̄) that compose Cq .
η The number of bits needed to represent idmax.
γ A random number to increase the bits for primes in QAA-ADV.

λ, Fλ The first prime larger than 2η+γ and its prime field (without 0).
g, GFλ

A generator and a set of generators for Fλ.

Fig. 2. Summary of frequently used notations.

database with a set of τ unique prime numbers for
some small integer τ (say τ = 4). One way of achieving
this is as follows. Client s1 sets p1 = 2 and attaches
{p(j−1)×τ+1, . . . , pj×τ} to his jth record r1,j for j =
1, . . . , n1. Note that efficient polynomial algorithm exists
for the primality test [1]. For an integer n, the state
of the art deterministic algorithm has a complexity of
O((log n)4); and the probabilistic test (e.g., the Miller-
Rabin primality test) is even faster in practice [15].
Hence, given the prime pn, the next prime pn+1 could
be found efficiently by repeatedly applying the primality
test to consecutive odd numbers.

After processing r1,n1
, s1 sends n1 and pn1×τ to s2

who follows the same procedure, but starts with the
prime pn1×τ+1. Let Ni =

∑i
κ=1 nκ, the ith client si

attaches primes {p(Ni−1+(j−1))×τ+1, . . . , p(Ni−1+j)×τ} to
his jth record ri,j . The augmented databases are sent
to the server. Note that this step is very efficient, for
example, it only takes a few seconds to generate the first
million primes in our testbed computer, a standard PC.
This process is also only a one-time cost. In the sequel,
a record r includes its augmented primes.

Construct the challenge for a query q. Without loss of
generality, suppose that client s1 wants to send a query
q to the server R. He will construct a challenge Cq for
q. First, s1 generates two small random integers ωt and
ωf (say less than 30). He also generates a random bit-
sequence βq . The length of βq is a random, small integer
value (say in the range of [10, 100]). Client s1 sends both
q and βq to the server for the query execution.

Next, s1 repeats the followings. He contacts a ran-
domly selected client sα, and asks sα to randomly select
a few records from qα,t, randomly distribute them into
two sets and return them to s1. Note that sα only needs
to check his records against the selection predicate of q,
but not to execute q itself. He does not need to find all
records in qα,t, but randomly picks a few records that
have been identified to satisfy q’s selection predicate.
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Client s1 repeats this step with other randomly selected
clients (s1 could be chosen as well), until a total of ωt

and ωf records for the two sets respectively have been
collected in qi,t’s from the sampled clients.

We denote the two sets of records sampled from qi,t’s
as qc and q̄c. Clearly, qc ⊂ qt and q̄c ⊂ qt. Also, by
our construction, |qc| = ωt and |q̄c| = ωf . As we will
see shortly, ωt and ωf are very small values (less than
30). They are usually much smaller than the number of
records in qt.

For any record r, let h(r) = H(r⊕βq) mod τ +1, where
⊕ is the concatenation and H is a one-way, collision
resistant hash function, such as SHA-1. Let p(r, j) repre-
sent the jth attached prime of the record r for j ∈ [1, τ ],
client s1 prepares the challenge Cq as follows, where ϑr

is randomly chosen per record:

Cq :

{

Ct
q =

∏

r∈qc
p(r, h(r))

Cf
q =

∏

r∈q̄c
p(r, ϑr) where ϑr ∈ [1, τ ] and ϑr 6= h(r).

In the sequel, we refer to the two sets of primes that
were sampled to construct Ct

q and Cf
q as Pq and Pq̄

respectively. Basically, s1 selects the h(r)th prime from
the τ augmented primes for each record r in qc into Pq ,
and a random non-h(r)th prime for each record in q̄c

into Pq̄ . Ct
q and Cf

q are simply the two products of these
selected primes. Since Ct

q and Cf
q are constructed at the

client-side and retained locally by the client s1, hence,
their constructions are independent to the submission of
the query q to the server (once βq has been generated)
and the server-side execution of q, thus can be done in
parallel without delaying the normal query process.

Note that Cq only depends on the corresponding
primes for records in qc and qc̄, but not the records them-
selves; given the value of βq , sampled clients can select
which prime to use for a selected record locally. Hence,
to reduce the communication cost, s1 can forward βq to
sampled clients. With a pre-determined hash function H ,
each contacted client could pick the right prime for each
sampled record and send back only the two products of
these primes, plus a single bit per product to flag which
set (qc or q̄c) a product’s associated records belong to.

Server’s execution of the query q. While executing the
query q in the database D, for a record r ∈ qt that
the server R has touched, R finds r’s augmented prime
p(r, h(r)). It is possible for the server to compute h(r),
since βq has been submitted with q, assuming that R and
all clients have agreed on a pre-selected hash function
H . The query overhead for the server is the calculation
of the hash function for every record in qt. The set that
contains all primes selected by the server in answering
q is clearly {p(r, h(r)) for ∀r ∈ qa}. The evidence χq is
simply this set. R then returns to s1 both A′

q and χq .

Client’s verification. The verification is to try to divide
Ct

q and Cf
q respectively by every prime in χq . If R is

honest, clearly, qc ⊆ qt = qa, and Pq

⋂

χq = Pq , Pq̄

⋂

χq =
∅; s1 should expect that, at the end of iterating through
all primes in χq , Ct

q equals 1 and Cf
q equals the initial

value of Cf
q . Essentially, the verification function V(xq)

does the followings,

for ∀p ∈ χq

{

Ct
q = Ct

q/p, if gcd(Ct
q , p) = p;

stops and outputs 0, if gcd(Cf
q , p) 6= 1.

V(xq) outputs 1 if and only if Ct
q = 1 when all primes

in χq have been checked and it has not terminated and
outputted 0. Clearly, there is no false positive in this
scheme, i.e., if R is honest, then V(xq) = 1. A lazy server
can be caught with a high probability.

2.2 Theoretical Guarantee and Cost Analysis
We first explain some designs in QAA-BSC, specifically,
the introduction of τ unique primes per record, the
concatenation of βq in computing h(r) for a record r,
and the inclusion of Cf

q in the challenge Cq .
If each record has only one associated prime, the

server can find all primes for records in qt as χq , without
retrieving the records themselves, since the mapping
between a record and its prime is deterministic. A
prime is much smaller in size than a record, the server
may store all primes in a hash table and significantly
reduces his IO cost. Using multiple primes per record
and making the choice on the prime selection random
per query in the challenge construction solve this issue.
We further enforce that this choice has to be made with
the combined knowledge of a record r (so that r has to
be accessed for the server to make the right choice for
records in qc) and a random bit-sequence βq per query.
The dependence on βq means that a fresh, random bit-
sequence needs to be used for a new query, to ensure
that the selections on primes are random across different
queries, so that the server cannot store the choice from
one query and use it for other queries without reading
the contents of records any more. The inclusion of Cf

q

in the challenge Cq is also necessary, since otherwise
the server may simply return all augmented primes for
records in qt for any query q. This will guarantee that
they factor any Ct

q to 1 eventually.
Next, we analyze the success probability δ of QAA-BSC

for catching a lazy server R, in terms of the number of
records that R has retrieved from the set qt. Recall that
in Definition 1, the actual set of records from qt that R
has accessed in answering q is referred to as qa.

Firstly, for any record r in qa, the server is able to
find its h(r)th prime to include in χq . The server may
randomly select one prime per record for the remaining
records in qt − qa. The probability for the server to select
all “correct” (the h(r)th) primes for these records is
( 1

τ
)|qt−qa|, which is negligible unless |qa| is very close

to |qt|. For a lazy server, this is clearly not the case.
Hence, to simplify our analysis and without affecting it
to a notable degree, we ignore the chance that the server
may select correct primes for records that he has not
accessed. The complete analysis, with the account for the
slight chance that the server may find correct primes for
records in qt − qa by randomly selecting one prime per
such a record, appears in the full version of the paper.
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Fig. 3. The success probability, |qt| = 105.

Given this observation, clearly, when |qa| < |qc|, δ = 1,
i.e., a lazy server that has touched less than |qc| number
of records from qt (no matter which they are) will always
be caught. When |qa| ≥ |qc|, whether the client can catch
such a lazy server depends on the event if qc ⊆ qa,
i.e., δ = 1 − Pr[qc ⊆ qa]. In our scheme, records in
qc are selected uniformly at random from qt, there are
(

|qt|
|qc|

)

number of possibilities for the formation of qc. On

the other hand, since R has no knowledge on records
in qc, any choice he has made in choosing a record
to be included in qa could be viewed as being made
independently at random. Hence, given one fixed qc,

R has at most
(|qa|
|qc|

)

number of chances to include all

records from this qc in qa. Hence:

Pr[qc ⊆ qa] =

(

|qa|

|qc|

)

/

(

|qt|

|qc|

)

=

|qc|
∏

i=1

|qa| − |qc| + i

|qt| − |qc| + i
. (1)

Theorem 1. For a single query q, the probability δ that a
client catches a lazy server in QAA-BSC is,

δ =

{

1, if |qa| < |qc|

1 −
∏|qc|

i=1
|qa|−|qc|+i

|qt|−|qc|+i
≥ 1 − ( |qa|

|qt|
)|qc|, otherwise.

(2)

Since the challenges are independent for different
queries, the probability that a lazy server avoids being
caught drops exponentially after multiple queries. As a
result, we have:

Corollary 1. The success probability ζk for clients to catch
a lazy server after k queries {q1, . . . , qk} in QAA-BSC is:

ζk = 1−
∏k

i=1(1−δi), where δi is given by applying Theorem
1 to the query qi.

To help understand these results, say |qt| = 105, we
plot the values of δ with |qc| = 10, 20 and 30 respectively
when we change the values of |qa| from 0 to |qt| in Figure
3(a). It shows that even if the client has only sampled
10 records in qt (only 0.01% of |qt|), the server has to
retrieve 70% records in qt in order to have a slight chance
(1% probability) of escaping from being caught lazy. If
the client has increased his sample size to 20 records,
the server has to retrieve about 80% records to have
a slight chance (1% probability) to escape. Extending
this experiment to k queries, for simplicity and without
loss of generality, suppose that we have k queries with
the same sizes for qc, qa and qt. Let |qt| = 105 and
|qa| = 0.9|qt|, Figure 3(b) indicates that the escaping

probability for a lazy server drops quickly to 0 for very
small values of k (3 or 4), even if the client has just
sampled |qc| = 10 records from qt (0.01% of |qt|) to build
his query challenge and the server has accessed 90%
of records in qt. An even nicer property is that |qc| does
not need to increase to maintain the same high success
probability as |qt| increases, as long as |qa|/|qt| keeps the
same ratio (based on equation 2). These results suggest
that, even with a tiny set qc, the server has to access a
significantly large portion of records in qt to avoid being
caught in the QAA-BSC scheme for a single query. If a
client has asked a few queries, it is almost impossible
for a lazy server to escape.

Cost Analysis. The client-side communication cost is
8(|qc| +|q̄c|) bytes in the worst case, assuming that each
prime takes 8 bytes (64-bit prime). In practice, this cost
is smaller as the sizes of the two products of these
primes from each contacted client typically require less
number of bits. The computation cost for all clients at
the client-side is dominated by the computation of the
hash function h(r) for every record in qc or q̄c, which is
in turn determined by the cost of the one-way, collision
resistant hash function H , denoted by CH . The client-side
computation cost is then CH(|qc|+ |q̄c|). CH is very small
in practice, for example, SHA-1 takes a few µs for inputs
that are up to 500 bytes in a standard PC.

The client-server communication cost consists of two
parts. For the client-to-server part, the only overhead is
the transmission of the random bit sequence βq , which
is very small in tens of bits. For the server-to-client
part, the communication overhead is contributed by the
number of primes in χq, denoted as |χq|. For an honest
server, |χq| = |qt| = ρqN . Hence, the communication
overhead is 8ρqN bytes. The server-side query overhead
is contributed by the calculation of the hash function h(r)
for every record r in qt, which is very small comparing
to the normal query execution cost, and is calculated as
CH |qt|.

In the verification step, for a prime p ∈ χq , the client
can check if p divides Ct

q (Cf
q ) efficiently by finding the

gcd(p, Ct
q) (gcd(p, Cf

q )). If gcd(p, Ct
q) = p, then p divides

Ct
q , otherwise it does not. Computing the gcd can be

done efficiently in logarithmic time [4] w.r.t. Ct
q (Cf

q ).
Since |χq| = |qt| = ρqN , the client-side’s verification cost
is O(ρqN log(max(Ct

q, C
f
q ))). Finally, there is a storage

overhead of 8τN bytes in the QAA-BSC scheme, to store
τ distinct primes per record.

3 THE QAA-ADV SCHEME

A major limitation in the QAA-BSC scheme is that the
server-to-client communication cost becomes expensive
when |qt| or N increases. It also implies a linearly more
expensive verification cost for the client. We introduce
an advanced scheme, QAA-ADV, to address these issues.
The basic intuition is to, instead of keeping the challenge
Cq locally, ask the client to forward Cq to the server. This
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requires that the valid evidence χq must be built based
on both the challenge Cq and the honest execution of q.

3.1 The Scheme

In this scheme, we do not require any auxiliary informa-
tion to be stored in the databases. Instead, we assume
that a distinct, one-way and collision-resistant function
fq : r, βq → i ∈ [1, ℓ] exists per query q, where r is
a record in the database D and βq is a random bit
sequence. We also assume the existence of a collision-
resistant mapping function G : i → p ∈ P, where i ∈ [1, ℓ]
and the set P contains ℓ unique primes {ν1, . . . , νℓ},
where ℓ ∈ Z

+ and ℓ ≥ N . The exact elements in P as well
as the value of ℓ and the constructions of fq and G will
be discussed in Section 3.2. Note that P is a conceptual
set without being materialized.

Construct the challenge for a query q. Without loss
of generality, assume that client s1 has a query q to
be submitted to the server. Following the exactly same
fashion as the construction in the QAA-BSC scheme, s1

generates βq, ωt, ωf and collects the two sets of records
qc and q̄c by randomly contacting a few other clients.
Similar to the QAA-BSC scheme, the records in qc and q̄c

are not required to be sent back to s1 by different clients
that have been sampled. Rather, they compute one prime
per record, G(fq(r, βq)), in these two sets and send back
only the two products of these primes. To achieve this,
s1 also generates function fq and G as described above.
The mappings produced by fq’s must also be different for
different queries.

For a client s that has been contacted by s1, assume
that s is contributing a record r to either qc or q̄c to s1,
s generates the prime G(fq(r, βq)) ∈ P. He computes
the two products (one for qc and one for q̄c) of all
these primes. He sends back these two products and
a single bit per product to indicate whether a product
corresponds to records in qc or q̄c. We denote the set of
primes that are produced by records from qc as Pq and
the set of primes that are produced by records from q̄c

as Pq̄ . Let Ct
q =

∏

ν∈Pq
ν, and Cf

q =
∏

ν∈Pq̄
ν, The query

challenge Cq for q is then constructed as: Cq = Ct
q · Cf

q .
Finally, s1 submits the query q, the random bit sequence
βq , the challenge Cq , and the function fq to the server
R; s1 also keeps the product Cf

q locally for verification
purpose.

Server’s execution of the query q. The goal of our
challenge is to require the server to factor out Ct

q from
Cq , i.e., server needs to produce: χq = Cq/Ct

q = Cf
q .

Next, we show that this is efficiently achievable for an
honest server. Besides the normal execution of the query
q, the server maps each record r ∈ qt to a prime in P

using the function fq submitted by the client and the
function G that is available to both the clients and the
server. The server R initializes χq = Cq , and for every
record r ∈ qt he does the following, let νr = G(fq(r, βq))
and χq = χq/νr, if gcd(χq, νr) = νr. At the end of the

query processing, R returns the query response A′
q and

χq. Clearly, for an honest server that has touched all
records in qt, χq = Cq/Ct

q = Cf
q as required. A lazy

server that has only touched a subset of records from
qt (or not at all) will not be able to produce the correct
evidence χq = Cf

q with a high probability (details in
Section 3.3), due to the one-way and collision resistant
properties of fq, the collision-free property of G and the
fact that fq changes for different queries, which ensure
that the server has to read the actual content of a record
in order to find its mapping prime in the set P for a
query q.

Client’s verification. The verification in the QAA-ADV

scheme is extremely simple. An honest server should
return a χq that equals Cf

q , which only takes O(1) time
to check (as s1 has kept Cf

q ). Hence, the verification
function V(χq) = 1 if χq = Cf

q ; and V(χq) = 0 otherwise.

3.2 Constructions of fq and G

The Function fq: The function fq has to be a one-way,
collision resistant mapping from records in D to an
integer field [1, ℓ], for some ℓ ≥ N . A fresh mapping
should be used per query, otherwise the server may
remember this mapping and obtain the results without
accessing records for new queries. This function must
have a small description size (since it is sent from the
client to the server for every query) and be efficient
to compute. More importantly, the size of the output
field, determined by the value ℓ, should not be too large.
This is because that ℓ determines how many primes P

contains, which in turn decides how large they are and
has a significant impact on the efficiency of the scheme.

Consider a simplest implementation of fq as follows.
For each query q, we produce a random permutation
for records in D (independently from other queries). For
any record r, we simply let fq(r, βq) output the index
(position) of the record r in this permutation. However,
this function has an O(N) description size, as it has to
remember the random permutation of all records per
query.

In fact, fq should be a one-way, perfect hash function
and the above implementation is a minimal perfect hash
where the output consists of consecutive integers. It has
been shown that the lower bound on the space usage of
the minimal perfect hashing is O(N) for an input set of
N elements. This is too expensive to use for our purpose.
In our setting, a perfect hash function with a small space
usage and the one-way property is sufficient.

This suggests that we can use a general one-way,
collision resistant hash function H , and apply H to
the concatenation of the record r and the random bit
sequence βq per query q as fq , i.e., fq(r, βq) = H(r⊕βq).
However, a serious problem with this approach is that
the output domain size is too large to be efficient. A too-
big value of ℓ indicates a larger set P that requires more
and larger primes (since the domain of function G is
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bound by ℓ and the average gap between prime numbers
near n is O(ln n) on expectation [28]), which inherently
introduces more computation and communication over-
head to the scheme. General one-way, collision resistant
hash functions do not limit the size of their inputs, they
often require a large output domain size to be collision
free. For example, SHA-1 takes variable-length inputs,
and maps them to 20-byte (160 bits) outputs. This means
that simply taking fq(r, βq) = H(r ⊕ βq) will be too
expensive for our purpose (as ℓ will be 2160 if SHA-1
is used).

Since the number of records in the database D is
limited and each record has a limited length, we can
design better alternatives. Specifically, we assume that
each record r in distributed databases has a unique id
idr. This can be established by clients in a pre-processing
step for static databases. For dynamic updates, there are
many efficient ways to maintain a collision free set of
idr’s over distributed data sets and this issue will be
discussed in section 4. We also denote the maximum id
value for all records as idmax, and do not require idr’s
for records in D to be strictly consecutive.

Assume that idmax has η bits (expected to be O(log N)),
and γ is a small integer (say less than 20) fixed in
the scheme. Define the function eq : r, βq → {0, 1}η+γ

as: eq(r, β) = idr · 2γ + c, where, at the client-side, c is
determined by:

c = H(r ⊕ βq) mod 2γ , if r ∈ qc, (3)

c = a random ϑ ∈ [0, 2γ) and ϑ 6= H(r ⊕ βq) mod 2γ ,

if r ∈ q̄c. (4)

Note that for a record r ∈ qt, the server cannot
distinguish if it belongs to qc or q̄c or neither of them.
Hence, at the server-side, c is always determined by
equation 3. Basically, eq shifts the id of r to the left for
γ bits, then adds a value of c ∈ [0, 2γ) to it, where c is
H(r ⊕ βq) mod 2γ if r ∈ qc, or a random value different
from H(r ⊕ βq) mod 2γ if r ∈ q̄c. Since records have
unique ids and c < 2γ , eq is clearly collision free. The
output domain of eq(r, βq) is bounded by 2η+γ .

Let the first prime that is larger than 2η+γ be λ,
which can be found efficiently using the Miller-Rabin
primality test, as discussed at the beginning of Section
2.1. The prime gap is lnλ on expectation near λ [28],
and the Miller-Rabin test has a complexity of O((log λ)3)
for a value λ. Hence, we can find λ in O((log λ)4) on
expectation. We denote λ’s prime field (without 0) as
Fλ = {1, 2, . . . , λ − 2, λ − 1}.

In number theory, Fλ is a cyclic group that can be
generated by its primitive root in some order [4]. A
primitive root for a cyclic group is also referred as a
generator for the cyclic group. If g is a generator for Fλ,
then Fλ,g = {g1 mod λ, . . . , gλ−1 mod λ} is a permutation
of Fλ.

A cyclic group has at least one generator, and usually
many in practice [28]. The best deterministic algorithm
can find the generators for Fλ in O(k2 log λ) [4], where k

is the number of the prime factors of λ − 1. In practice,
the occurrences of the generators are often dense enough
such that a simple probabilistic search procedure can
locate a generator much more efficiently [29].

Note that for different queries, the function eq will
be different due to the randomness introduced by βq in
equation 3. However, the output domains of these eq’s
are the same, i.e., [0, 2η+γ) (assuming that the number
of bits required for idmax does not change, which is
reasonable as long as N does not change dramatically,
or we can simply use an η value that represents a few
more bits than what is required to store the initial idmax).
This suggests that Fλ is the same for different queries.

Hence, in the QAA-ADV scheme, we only need to find
the generators for Fλ once in a pre-processing step, once
a γ value has been picked. Suppose these generators are
GFλ

= {g1, . . . , gκ} for some value κ. Finally, the function
fq : r, βq → [1, ℓ] is simply defined as:

fq(r, βq) = geq(r,βq)
x mod λ, for some x ∈ [1, κ], gx ∈ GFλ

.
(5)

For each query q, the client selects a random generator
gx from GFλ

to construct fq (the bit sequence βq is also
randomly generated per query q). The function fq in
equation 5 is clearly collision resistant, by the property
of the generator gx and the collision free property of
eq. The server may still be able to reverse the function
fq(r, βq) if he is willing to pay considerable computation
cost, however, that defeats the purpose for him being
lazy. Hence, fq(r, βq) is also one-way for a lazy server by
the fact that it is very expensive to solve the discrete
logarithm problem for a large prime field [9]. The intro-
duction of γ bits (say 15 bits) appending to the record id
in the function eq is to ensure a large enough prime λ to
have sufficient number of generators for its prime field,
and to make it expensive to solve the discrete logarithm
problem for a lazy server (in order to break the one-way
property of the function fq).

Lastly, the construction of the function fq in equation
5 also explains that ℓ = λ − 1 in the QAA-ADV scheme,
which is expected to be (η + γ) bits, i.e, ℓ = O(2η+γ).

The Function G: The simplest function G : i ∈ [1, ℓ] →
p ∈ P is to pre-compute ℓ unique primes and maintain
the set P in both the client and the server side. However,
this approach is very expensive, since ℓ = 2η+γ (ℓ > N ),
indicating that a large number of primes has to be kept
in P for every client.

Hence, the best approach is to generate only necessary
primes corresponding to records in qc and q̄c (required
to construct the challenge Cq for a query q) on the
fly efficiently, i.e., the set P is never materialized. This
requires a function G that produces collision free primes
on the fly based on different index values outputted by
the function fq. G must also be deterministic to ensure
that given the same index value produced by fq, both
the client and the server will generate the same prime.

If one can efficiently find pn (recall that pn is the
nth prime) using a polynomial formula, then this task
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is trivial. However, how to do this is unclear to this
date [4]. Existing methods for finding pn efficiently
given n as a parameter typically use the sieve algorithm
(or the sieve of Eratosthenes), which is similar to an
enumerating approach that starts with p1 and finds
consecutive primes repeatedly till pn using a primality
test. The sieve algorithm also has a nearly linear, high
space consumption cost. This approach is obviously too
expensive, especially for the client, since it has to be used
for every record in qc or q̄c for each query.

A tempting choice is to apply the Bertrand-
Chebyshev’s theorem [15], which says that given a
number n > 1, there always exists at least one prime
between n and 2n. Hence, we can design the function
G as follows. For an input i, it simply finds the first
prime after 2i using an efficient primality test method.
This function is deterministic, efficient and collision free,
since there must exist at least one prime between 2i and
2i+1. However, this approach suffers from generating too
large primes (approximately 2ℓ in the worst case and ℓ
is about 2η+γ), which significantly degrades QAA-ADV’s
efficiency as it involves multiplication and division of
these primes (O(|qt|) gcd operations for the server).

We use a similar intuition as above, but require that
G generates primes as dense as possible so that the
maximum prime from the ℓ possible outcomes does not
become excessively large. To this end, we leverage on
well-established, extensively-tested conjecture on primes
from the number-theory field.

Since we are willing to work with well-established
conjectures. The first natural choice is to use the Legen-
dre’s conjecture [15], which states that there exists at least
one prime between n2 and (n+1)2 for all positive integer
n. As a result, we can let G(n) return the first prime that
is after n2. This will ensure that G(n) generates unique
primes and is collision free for all n ∈ Z

+. However, this
may still generate very large primes for n ∈ [1, ℓ], since ℓ
is roughly 2η+γ and (η+γ) could be as big as 64 or even
larger. We remedy this problem by leveraging on another
well-established conjecture, the Cramér’s conjecture [8]:

pn+1 − pn = O
(

(ln pn)2
)

holds for all n ∈ Z
+. (6)

The constant in Cramér’s conjecture is upper bounded
by 1.13 for all known prime gaps [13], [21]. We first prove
the next technical Lemma.

Lemma 1. Assume the Cramér’s conjecture, then for all n ∈
Z

+ and n ≥ 2, pn − pn−1 < 4.52(lnn)2.

Proof: Firstly, by the well-known upper-bound for
the nth prime, pn < n lnn + n ln lnn for all n ∈ Z

+ and
n ≥ 6 [4], [15]. Clearly, this indicates that pn < (n + 1)2

for all n ∈ Z
+ (we can easily verify that this holds for

n = 1, . . . , 6). On the other hand, since the constant in the
big-O notation in equation 6 is upper bounded by 1.13
for the largest known maximal prime gap to this date
[13], [21], we have: pn − pn−1 ≤ 1.13(ln pn−1)

2, for n ∈
Z

+ and n ≥ 2. Combining it and pn < (n + 1)2, we

get: pn − pn−1 ≤ 1.13(ln pn−1)
2 < 1.13(ln(n2))2 <

4.52(lnn)2, for n ∈ Z
+ and n ≥ 2, which completes the

proof.

Theorem 2. Assume the Cramér’s conjecture, if we define
S(n) as: S(n) = 18.08n(lnn)2 for all n ∈ Z

+, then there
exists at least one prime between S(n) and S(n + 1) for all
n ∈ Z

+. The function G(n) that returns the first prime that
is larger than S(n) is collision free for all n ∈ Z

+.

Proof: We can easily verify the correctness of the
theorem for n ∈ [1, 812) empirically. As such, we only
need to show that there exists at least one prime in (S(n),
S(n + 1)] for all n ∈ Z

+ and n ≥ 812. We prove this by
contradiction. Firstly, obviously for all n:

S(n + 1) − S(n) = 18.08[(n + 1)(ln(n + 1))2 − n(lnn)2]

> 18.08(lnn)2. (7)

Assume that our claim does not hold, i.e. there exists
at least one integer j ∈ Z

+ and j ≥ 812, such that
there is no prime in (S(j), S(j + 1)]. Let the first prime
larger than S(j) be pz+1 for some value z, then the first
prime smaller than or equals S(j) must be pz . By our
assumption, there is no prime in (S(j),S(j + 1)], hence
pz ≤ S(j) < S(j +1) < pz+1, which implies that (the last
step is derived by inequality 7):

pz+1 − pz > S(j + 1) − S(j) > 18.08(ln j)2. (8)

On the other hand, by Rosser’s theorem [15], which
says that pn > n lnn for all n ∈ Z

+, we have:

(z + 1) < z ln z < pz ≤ S(j) = 18.08j(ln j)2 < j2. (9)

In the above, the first inequality holds for all z ∈ Z
+ and

z ≥ 4. Since j is at least 812, z cannot be too small, so
it trivially holds. The second inequality is based on the
Rosser’s theorem, and the last inequality is based on the
fact that for all j ≥ 812, j > 18.08(ln j)2.

Now, applying Lemma 1 on pz+1 and pz , and then the
fact that (z + 1) < j2 by inequality 9, we have:

pz+1 − pz < 4.52[ln(z + 1)]2

< 4.52(ln j2)2 = 18.08(ln j)2. (10)

We reach a contradiction (Inequality 10 contradicts
with inequality 8). This completes the proof.

Theorem 2 relies on the Cramér’s conjecture that is
widely-believed to be true and has been tested exten-
sively in the literature. It holds for all known prime gaps
[13], [21]. Nevertheless, we empirically verified Theorem
2’s correctness. We have tested for n from 1 to more than
1 billion and it always holds. Our result in Theorem 2 is
very tight in terms of generating primes that are not far
apart from each other, since they cannot be too dense,
given that the prime gap is O(lnn) on expectation near
n [28]. This indicates that the best generating function
G one can hope for is based on n lnn, and we have
managed to obtain one based on 18.08n(lnn)2.

By Theorem 2, both the client and the server do not
need to pre-generate and store the set P of ℓ unique
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primes. Instead, in the QAA-ADV scheme, P is simply
a conceptual set. For any record r, in order to find its
mapping prime νfq(r,βq) in the conceptual set P for a
query q, the client (or the server) simply computes
νfq(r,βq) = G(fq(r, βq)) on the fly.

3.3 Theoretical Guarantee and Cost Analysis

The inclusion of Cf
q is necessary, otherwise the server

may simply return χq = 1 for any query q. Recall that
Cf

q is the product of primes corresponding to sampled
records from q̄c. For a record in q̄c, it is first randomly
mapped to an index value in the range [idr ·2γ , idr ·2γ+1)
by the function eq, which is further mapped to an index
value in [1, ℓ] by the function fq , and a prime in P by the
function G. Essentially, for any record in qt, there are 2γ

number of possible primes in P that it corresponds to.
One of them (determined by H(r ⊕ βq) mod 2γ) is used
for the construction of Ct

q if this record is sampled into
qc. To distinguish from the records in qc (that contribute
to Ct

q), a record in q̄c randomly selects one of its other
2γ − 1 primes to contribute to the Cf

q .
With the presence of Cf

q , in order to terminate earlier at
any point, the server has to decide that the remaining Cq

no longer has the contribution from any prime factor in
Ct

q . The only way that he can make sure this is to ensure
that primes in both Ct

q and Cf
q have been exhausted by

records he has accessed, since he can not distinguish Ct
q

and Cf
q . This means that for every accessed record r,

if r’s mapping prime (generated by fq and G) does not
factor Cq (i.e., r /∈ qc), the server needs to try to factor Cq

with 2γ −1 number of other possible mapping primes of
r to decide whether r belongs to q̄c (only if one of them
factors Cf

q ). The chance that he can terminate earlier
without accessing a significant number of records in qt is
very small (since qc and q̄c are randomly selected from
qt by the client, this probability is essentially Pr[qc ⊆
qa and q̄c ⊆ qa]). Furthermore, in order to realize this
small chance, the server has to generate on expectation
half of the 2γ − 1 possible mapping primes for every
record he accessed and performs the gcd operation for
each of them, which is clearly too expensive for a lazy
server.

Since that the server cannot factor Cq into a set of
individual prime factors easily unless he is willing to
pay some significant computation cost (by the hardness
of the integer factorization problem [15]), R cannot effi-
ciently find all prime factors of Cq while he is trying to
be lazy. Even if he does, by the one-way property of the
fq function, he still cannot figure out which record maps
to a particular prime factor. Hence, the only way that R
can be sure with 100% probability to return χq = Cf

q is
to honestly execute the query, touch every record r in
qt and check if r maps to a prime G(fq(r, βq)) that can
factor Cq . By a similar analysis as that in the QAA-BSC

scheme, we can show that:

Theorem 3. QAA-ADV has the same success probability for
a client to catch a lazy server as that of the QAA-BSC scheme,

in both the single query (as in Theorem 1) and the k-queries
(as in Corollary 1) cases.

Cost Analysis. The client-side communication cost is
the same as that in the QAA-BSC scheme. The client-
side computation cost is dominated by the computation
of the function fq(r, βq) and the function G(fq(r, βq))
for sampled records in qc and q̄c. The cost of fq(r, βq)
consists of the computation of the hash function H and
the modular exponentiation of gx mod λ where x ≤ λ−1
and λ = O(2η+γ). Since the modular exponentiation
(gx mod λ) can be computed in O(log x) time [4], the
cost of the function fq(r, βq) is O(CH + log λ). For the
function G(i) for i ∈ [1, λ − 1], since the prime gap is
lnλ on expectation near λ [28], and the Miller-Rabin test
has a complexity of O((log λ)3) for a value λ, its cost is
simply O((log λ)4). The client-side computation cost (the
sum of all clients) is O((|qc| + |q̄c|)(CH + (log λ)4)).

The client-server communication overhead includes
the transmission of the challenge Cq , the random bit
sequence βq , the value γ, the generator g and the prime
λ used in function fq, which is dominated by the size of
Cq , i.e., 8(|qc|+ |q̄c|) bytes in the worst case, but usually
smaller in practice as the product of two 8 bytes numbers
may need less than 16 bytes to store. The server-client
communication overhead simply consists of χq , which
is 8|q̄c| bytes in the worst case and usually smaller in
practice for the similar reason.

The server-side’s query overhead for an honest server
is the test to be performed for every record in qt to see
if its mapping prime factorizes Cq or not. This involves
the computation of the function G(fq(r, βq)) and the call
to a gcd procedure with Cq and another smaller prime
number. Hence, the overall cost is O(|qt|(CH + (log λ)4 +
log Cq)). The client-side’s verification is done in constant
time, by checking if Cf

q = χq. Finally, there is no storage
overhead.

4 OTHER ISSUES

Both schemes support the dynamic updates efficiently.
First of all, changing the values of some attributes of
an existing record or deleting a record does not require
any action for both schemes. To support insertions, in
the QAA-BSC scheme, one needs to assign τ distinct
primes to a new record at a site si such that these τ
primes are not currently assigned to any other records
in distributed databases. We can achieve this goal by
applying a standard technique for maintaining unique
ids in distributed sites, and assigning τ distinct ids for
one record. For each id of a record, we use the mapping
function G in Section 3.2 to generate a distinct prime. For
insertions in the QAA-ADV scheme, as long as a standard
technique for maintaining unique ids for distributed
sites has been used, it can support the dynamic updates
seamlessly. One simple way (definitely not the only way)
of maintaining a set of unique ids in distributed sites is
to use a coordinator at the client-side. We initially assign
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unique ids to all records in distributed sites and store the
max id idmax in the coordinator. When a record has been
deleted, its id will be reported to the coordinator. A new
record will simply recycle an id from the coordinator.
When the coordinator runs out of available ids, it will
return idmax + 1, and update idmax to idmax + 1. The
coordinator could simply be one of the clients.

To support clients that are not from {s1, . . . , sm}, we
denote such clients as {sm+1, . . . , sm+k} for some value
k. The only change in our schemes is to request any
client s to sample clients only from {s1, . . . , sm}, when
generating the sets of qc and q̄c. When answering a query
q only depends on a subset of attributes A for any record
r from qt, we can apply our schemes by replacing r with
its projection on A, i.e., πA(r).

In the QAA-BSC scheme, it is possible to use τ random
hash values that are related to H(r ⊕ βq) for a record
r when it is mapped to τ primes by H(r ⊕ βq) in our
scheme. This will require some changes to the scheme,
but the basic intuition of our design stays the same. The
main reason for using primes in our design is to reduce
the communication cost and at the same time, keep the
scheme simple and efficient. The communication cost
is arguably the most critical cost metric in distributed
systems and the typical outputs by one-way, collision-
resistant hash functions are considerably big, for exam-
ple, SHA-1 outputs a hash value of 20 bytes (has at
least 3 times of communication cost as using the primes).
More secure one-way, collision-resistant hash functions
require even larger output sizes. On the other hand, since
the challenge Cq has been forwarded to the server, a
hash-value based approach is not feasible for the QAA-
ADV scheme, as the server could terminate earlier much
cheaply in this case (since H is cheap to compute).

When |qt| = 0, both schemes have to contact all clients
to realize that |qc| = 0, which does not change the
correctness of our schemes. But to avoid contacting all
clients in this case and to reduce the number of clients to
contact for constructing the challenge in general, clients
may deploy some peer-to-peer range queries techniques
[5], [30], [33]. A related issue is what happens when
some clients are temporarily offline. Since both schemes
rely on randomly sampling records (from qt) to construct
the query challenges, this does not pose a limitation
unless all clients that possess some records in qt become
offline at the same time, which happens rarely in practice
for typical queries and data distributions. To further
alleviate this problem, one can produce duplicates of
records and store them in some other clients.

In the basic setup of our schemes, data owners need to
store their databases locally. However, since our schemes
were built using random samples of records in the
databases, this assumption can be removed in practice.
Without compromising the soundness of the verification,
the data owners can store random samples of records
from their databases instead of maintaining the whole
databases locally. The drawback of this approach is that
this will increase the chance that qt might become empty

w.r.t. the sampled databases.
Lastly, we would like to point out that both schemes

still allow the server to utilize the cached records in the
main memory buffers to answer subsequent queries, if
they have been accessed by some precedent queries and
kept in the memory buffer at the server side. The key
observation is that the server only needs to prove that
he has honestly accessed the records in qt, it does not
matter if he accesses them from a memory buffer or the
disk. In both schemes, this proof is done by constructing
the respective evidence χq , which only depends on the
content of the records, not where the records come from.

5 EXPERIMENT

We implemented both schemes in C++. The GMP li-
brary was used for big numbers (more than 64 bits).
The NTL library was used for some number theory
functionality. We tested both schemes over queries that
have d-dimensional selection predicates (records may
have other, additional attributes); d is also referred to as
the query’s dimensionality. The server utilizes a multi-
dimensional indexing structure, specifically, the R-tree,
to answer queries. All experiments were executed on a
64-bit Linux machine with a 2GHz Intel Xeon(R) CPU.

Data sets. Real data sets from the open street map
project (http://www.openstreetmap.org/) were used for
d = 2. Specifically, we use the road network of California
(CA), which contains 12 million points. To experiment
with different sizes, we randomly sample the necessary
number of points from CA. For larger d values, we
generate synthetic values for (d − 2) attributes with the
randomly clustered distributions, and append them to
CA. We assigned a unique id for each point and treated
each point as a record. In addition to the d attributes
in the data set, each record is made as 200 bytes by
pending some random bytes, to simulate the scenario
where a record may have many other different attributes.
The server uses the R-tree to index the d attributes
for a data set. The default page size is 4 KB and the
index utilization is 0.7. Finally, note that the costs of
our schemes are determined by the size of the database
and the query selectivity. Hence, using different datasets
with various distributions and characteristics will result
in similar results.

Default setup. Unless otherwise specified, we assume
an honest server to reflect the overhead of our schemes.
The default parameters are as follows. In both schemes,
|qc| = 20, |q̄c| = 10, and query selectivity ρq = 5%. In the
QAA-ADV scheme, we also set the default value for γ as
γ = 15. In all experiments, 100 queries were generated
independently at random and we report the average cost
per query. The default query dimensionality is d = 3 and
the default data set size is N = 0.5 × 106 (half million).
The default query type is the range selection query. In
all communication costs, we do not include the part that
is contributed by the normal query execution, i.e., the
description of the query itself and the query results.
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(b) Computation cost.

Fig. 4. Client-side challenge construction cost.
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(b) Server to client.

Fig. 5. Client-Server communication costs.

Client-Side computation and communication costs. The
first step in QAA is to prepare the challenge for a
query q at the client side. This incurs both computation
and communication costs for clients. We measure both
costs in terms of the total costs for all clients, when
one client is constructing a challenge Cq for a query q.
Figure 4 shows the results for the average costs of one
query. Clearly, both the communication and computation
costs are determined by the number of sampled records
for constructing the challenges in both schemes, i.e.,
|qc| + |q̄c|. In both schemes, the communication cost is
8(|qc|+ |q̄c|) bytes in the worst case, since each contacted
client only sends back the two products for the primes
generated. This trends is clearly indicated in Figure 4(a).
Both schemes have similar client-side communication
costs when |qc|+ |q̄c| is the same, and they are less than
240 bytes for |qc| + |q̄c| = 30. In terms of the overall
client-side computation cost, both schemes have costs
that are linear to the number of sampled records as
shown in Figure 4(b). The QAA-ADV scheme is more
expensive since it needs to compute the function fq(r, βq)
and the function G(fq(r, βq)) to generate a unique prime.
However, even in this case, it only takes approximately
0.7 milliseconds (total computation costs of all clients,
this cost is distributed among different clients) for 30
sampled records. The QAA-BSC scheme is very cheap
in this respect and generates almost no computation
overhead for clients to prepare the challenge. Finally,
these costs are almost constants w.r.t. the dimensionality
of the query and the query selectivity.

Client-Server communication costs. Figure 5(a) shows
the communication cost from a client to the server when
the number of sampled records (|qc|+ |q̄c|) in the construc-
tion of the challenge Cq changes. QAA-BSC has almost
no communication cost from the client to the server,
other than sending the random bit sequence βq which
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Fig. 6. Server-side query cost vs. ρq.

is tiny in size; QAA-ADV needs to send the challenge
Cq to the server and the size of Cq increases linearly
w.r.t. the number of sampled records. Nevertheless, it
is a very small cost (less than 240 bytes) since the
necessary number of sampled records for our schemes is
small. This cost remains as a constant for different query
dimensionality and query selectivity.

Figure 5(b) shows the communication cost from the
server to the client after the query has been executed
when we vary the query selectivity ρq . It clearly shows
that the communication cost in the QAA-BSC scheme
grows linearly w.r.t. the increase of ρq , since it has to
return all primes corresponding to the records in qt. For
ρq = 10%, it reaches almost 400KB. On the other hand,
the communication overhead incurred by QAA-ADV is
very small (less than 100 bytes in this case) and does not
change at all w.r.t. ρq because the size of the evidence χq

solely depends on the number of primes in Cf
q that the

client has adopted in Cq . For both schemes, this cost is
a constant for queries of different dimensionality.

Server-Side execution cost. Next, we study the query
execution overhead on the server side with the presence
of QAA. We focus on the impact of query selectivity ρq in
these experiments. The results were reported in Figure 6.
We study two schemes separately, and report the query
cost with or without QAA in each scheme. Clearly, for
both schemes, the query costs increase linearly w.r.t. the
query selectivity ρq in all cases. In Figure 6(a), it shows
that QAA-BSC almost does not incur any overhead in the
normal query execution, since the server only needs to
compute a simple, collision resistant hash function H for
every record in qt and select the corresponding prime
per such record. On the other hand, since QAA-ADV

needs to compute functions fq(r, βq) and G(fq(r, βq)),
that are much more expensive than the simple hash
function H , for every record in qt. We did observe some
overhead to the normal query execution cost in Figure
6(b). However, this overhead is very small. For example,
when ρq = 8.5%, the normal query execution cost is
about 2.9 seconds; and the overall query cost with the
QAA-ADV scheme is only about 3.1 seconds.

Client-Side verification cost. The verification cost of the
QAA-ADV scheme is to simply check if χq = Cf

q , which is
very small and almost a constant for all parameters. This
cost in QAA-BSC is affected by both the query selectivity
ρq and the number of sampled records |qc|+|q̄c|, since the
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(a) Varying ρq .
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(b) Varying |qc| + |q̄c|.

Fig. 7. Client-side verification cost.

client needs to iterate through all primes corresponding
to records in qa (sent back from the server, and it equals
qt for an honest server) and test if a prime divides Ct

q or
Cf

q respectively. These results were plotted in Figure 7.
The cost on checking χq in QAA-BSC builds up almost
linearly as either the query selectivity (Figure 7(a)), or
the number of sampled records increases (Figure 7(b)).
Clearly, this cost is very small when ρq is small and
increases to less than 6 milliseconds when ρq = 10%
in the QAA-BSC scheme. This cost is negligible in the
QAA-ADV scheme in all cases.

Impact of the query dimensionality d. Among all cost
measures, the query dimensionality mainly affects the
server’s query cost. This is studied in Figure 8, by
testing it without and with QAA using the two schemes
respectively. Figures 8(a) and 8(c) report these results
in wall clock time (seconds). Clearly, in both cases the
server’s query cost increases as d increases; and for
similar reasons in experiments in Figure 6, QAA-BSC

introduces almost no overhead and QAA-ADV presents
small overhead. To demonstrate these trends, we plot
the overheads by these two schemes in percentage to the
normal query execution cost when we vary d in Figures
8(b) and 8(d). Clearly, the overhead for the server’s query
cost in the QAA-BSC scheme is about 1% when d = 2 and
drops to near 0% when d = 6; it is 12% for QAA-ADV

when d = 2 and drops to below 5% when d = 6. This
indicated that the query execution cost increases as d
increases, but the overheads in QAA for both schemes
are not significantly affected by the value of d.

Scalability w.r.t. N . We test the scalability of the two
QAA schemes w.r.t. the database size, by varying N
from 0.1 million to 1 million. Among all cost measures,
besides the server’s query cost, only the server-to-client
communication cost and the client’s verification cost in
the QAA-BSC scheme will be affected. These results were
reported in Figure 9. Clearly, both the server-to-client
communication cost and the client’s verification cost for
the QAA-BSC scheme increase linearly as the database
contains more records, as shown in Figures 9(a) and
9(b), since these two costs are affected by the number
records in qt in the QAA-BSC scheme. In contrast, the
corresponding costs in QAA-ADV are not affected by
N . The query costs on the server side are expected to
increase linearly as N increases, as shown in Figures 9(c)
and 9(d). Both schemes exhibit similar trends as before:

QAA-BSC has almost no impact to the query cost, and
QAA-ADV has a small overhead to the query cost.

Summary of the results and comparison to other
techniques. We also tested the effect of different γ values
(used in the function fq) to the computation cost in the
QAA-ADV scheme, and observed that the impact is not
significant for small changes in γ values, say γ values
differ within 10. We have also simulated a lazy server
by dropping some records and tested the effectiveness
of our schemes in catching a lazy server. The success
probability is almost identical to the theoretical results
shown in Figure 3 for both schemes. With |qc| as small
as 20, a lazy server has to access more than 90% of
required records to have a reasonable chance of escaping
the verification for a single query. It is almost impossible
for him to escape after a few queries from the same
client. For brevity, we omit these figures.

These findings clearly indicate that both of our
schemes are efficient and effective for defeating a lazy
server in distributed databases for IO-bound queries.
However, if the query selectivity ρq is large or the
number of records N in the database is huge, the QAA-
BSC scheme may incur high costs for the server-to-
client communication cost and the client’s verification
cost. In such scenarios, the QAA-ADV scheme should
be applied, which does have a slightly higher overhead
on the server’s query execution cost than the QAA-BSC

scheme, but such overhead is still very small relatively
to the normal query execution cost itself.

There are two existing work that have addressed
the query authentication problem with multiple owners,
w.r.t. malicious (and lazy) servers [22], [26], that may be
adapted to solve the QAA problem. The work from [26]
assumes that the authentication is provided by a trusted
third party, which is different from the model we used.

In [22], the authors presented theoretical results for
certifying data from multiple data sources. This tech-
nique can be employed for query access assurance
as well, by treating each query as a range selection
query (using the current query’s selection predicate)
and authenticate the query results from this range se-
lection query. However, in order to authenticate multi-
dimensional data (d > 2) from multiple data sources, the
technique in [22] relies on the multi-dimensional range tree,
which is not a practical structure for large datasets. Fur-
thermore, this technique also presents significant query
and verification overheads when being used to ensure
query access assurance.

Specifically, the technique in [22] requires a setup
phase. In the setup phase, each client needs to certify that
his records have been correctly stored on the server’s
database, incurring O(N logd N) IOs on the server side
and a total of O(CHN logd N) verification cost for clients.
There is also a communication cost of O(|H |N logd N)
bytes between the server and the clients. After the setup
phase, for one query execution, the server has an IO
overhead of O(logd N + |qt| · |R|/B) IOs to prove QAA to
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Fig. 8. Server-side query cost vs. different query dimensionality d.
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(a) Server to client communica-
tion cost.
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(b) Client’s verification cost.
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Fig. 9. Scalability by varying N .

the client (B is the page size and |R| is the record size).
It also incurs a communication cost of O(|H | · logd N +
|qt| · |R|) bytes. On the client side, the verification cost is
O(CH · (logd N − logd |qt|+ |qt| logd−1 |qt|)) to authenticate
the query results (so that the client can ensure that all
records in the query range, i.e., qt, has been accessed).
Finally, for any update in any client site, this technique
requires the system to re-run the setup phase.

6 RELATED WORK

The most related study is the query execution assurance
for a single data owner with queries submitted in batches
[32], which has been discussed in details in Section 1.

Another line of work concerns query authentication
in the outsourced database (ODB) model [16], [18], [19],
[23]–[26], [36], [38], where the goal is to defeat a mali-
cious server. Any technique that can defeat a malicious
server defeats a lazy server automatically. However, they
require more efforts and generate more overheads than
methods that are tailored to lazy servers, as shown in
[32]. Nonetheless, they are related to our study and we
next present a brief overview of these works.

Most existing query authentication techniques focused
on the general selection and projection queries and they
can be categorized into two groups, the aggregated
signature based approaches [19], [20], [23], [25] and the
merkle hash tree (MHT) embedded into various indexes
approaches [3], [10], [16]–[18], [24], [26], [31], [39]. In ad-
dition, injecting random records by the data owner into
the database has also been proposed [36]. This work uses
a probabilistic approach for query authentication and
hence it is more flexible and easier to realize in practice.
However, unlike other work in query authentication, it
does not guarantee absolute correctness.

Query authentication in multi-dimensional spaces
have been addressed by extending the signature-based
and the index-based approaches [7], [40]. Recent studies
have also addressed other challenging problems in query
authentication, such as join queries [25], [38], dealing
with XML documents [6] and text data [24], handling
dynamic updates [25], [37] efficiently. Improvement to
existing techniques were also proposed, such as separat-
ing the authentication from the query execution when
there is a trusted third party [26], or partially materializ-
ing the authenticated data structures to reduce the cost
[18]. The index-based approach has also been extended
to the PostgreSQL database [31].

Most studies for the query authentication problem
assume one data owner, hence they are not applicable
in distributed databases, except [22], [26]. Nuckolls et al.
[22] proposed a protocol using the MHT, which requires
each data owner to verify that every single record in his
dataset has been correctly stored in the server’s database,
a very expensive step. Only range selection queries were
supported and dynamic updates were not addressed.
Papadopoulos et al. [26] also addressed the multiple data
owners issue for the query authentication problem, but
assuming that the authentication is provided by a trusted
third party. Nonetheless, these techniques are designed
for malicious servers, hence, they are overkill for the lazy
server setting studied in this paper.

There has been some work on main memory au-
thenticated structures for defeating malicious servers.
However, these works [2], [11], [12], [27], [34], [35] focus
on centralized, main memory structures and are not
applicable to external memory, distributed databases.

7 CONCLUSION

This work examines the important problem of defeat-
ing a lazy server for distributed databases under the
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database as a service model [14]. We propose the query
access assurance for IO-bound queries in the distributed
and singe-query setting, and design two efficient and
effective schemes, each with its own distinct advan-
tages, that have achieved this goal with high success
probabilities. A challenging future work is to design
techniques that guarantee the more general concept in
dealing with lazy servers in distributed databases, the
query execution assurance, which could be applied to
both IO-bound and CPU-bound queries.
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