Bridging Social and Data Networks

ABSTRACT:

Social networking applications have emerged as the platform of choice for carrying out a number of different activities online. In addition to their primary target of social interaction, we now also employ such applications to search for information online or to share multimedia content with our friends and families. For instance, according to recent statistics, each of us spends on average 15 min on YouTube every day. Similarly noteworthy is the daily rate of queries that Twitter’s search engine receives: 600 million. These activities generate enormous quantities of data traffic that burdens the underlying transport network. This article describes how social and data networks can be integrated to enable enhanced and cost-effective performance. Such an integrated approach to systems design will become even more important in the near future due to the ongoing convergence of computer-communication technologies that will further increase the diversity of data-intensive social networking activities.

ARCHITECTURE:
EXISTING SYSTEM:

Therefore, multiple rounds of query may need to addition, the selected hosts may exhibit extensive distances from the querying peer in the topology of the underlying transport network, which in turn would make the exchange of information between the hosts and the peer quite inefficient and costly. The disadvantages of the traditional approach outlined above can be overcome by keeping track of the information preferences affiliated with each peer computer in the system and the relative distances between the peers in the underlying network topology.

Disadvantage:

The disadvantages of the traditional approach outlined above can be overcome by keeping track of the information preferences affiliated with each peer computer in the system and the relative distances between the peers in the underlying network topology.

PROPOSED SYSTEM:

There is a growing understanding on the part of network operators and peer-to-peer application developers that mutual benefits can be achieved by collaboration. The methods and systems presented in this article can lead to similar synergies between online communities, networked systems applications, and ISPs. In particular, they simultaneously enable enhanced application performance and data transport efficiency, to the benefit of the end user and the network operator as well.

Advantage:

- In particular, they simultaneously enable enhanced application performance and data transport efficiency

MODULES:

1. VIDEO SHARE,
2. AUDIO SHARE,
3. SOCIAL GRAPH REGULARIZATION,
1. VIDEO SHARE:

Dissemination in online communities is frequently carried out in a viral fashion. Particularly, we send the content of interest to all our contacts in the social graph, who then repeat the same procedure with their own contacts, and so forth, such a mode of delivery is very inefficient from a data communication perspective and can also lead to poor timeliness of the multimedia application comprising the content. In addition to their primary target of social interaction, we now also employ such applications to search for information online or to share multimedia content with our friends and families.

2. AUDIO SHARE:

Distributed network directory systems feature a collection of peer computers interested in exchanging information of interest. Each peer hosts a set of information items, data files, audio files, that may be shared with other peers in the network upon demand. There is a registry server that maintains a directory of all hosts in the system. When the system is queried for information, it returns a subset of hosts, which are then directly contacted for the item of interest. The procedure is repeated until the search is successfully concluded. Since the hosts to be queried are selected at random by the tracking server, they may not always have the desired information item. Therefore, multiple rounds of query may need to be initiated for detection to occur.

3. SOCIAL GRAPH REGULARIZATION:

The social graph can be regularized with data network information to enable efficient content filecasting among its nodes. In addition, the selected hosts may exhibit extensive distances from the querying peer in the topology of the underlying transport network, which in turn would make the exchange of information between the hosts and the peer quite inefficient and costly.

System Requirements:

Hardware Requirements:

- System: Pentium IV 2.4 GHz.
Hard Disk : 40 GB.
Floppy Drive : 1.44Mb.
Monitor : 15 VGA Colour.
Mouse : Logitech.
Ram : 512 Mb.

Software Requirements:

- Operating system : Windows XP.
- Coding Language : ASP.Net with C#
- Data Base : SQL Server 2005