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Abstract—The API of a Web service restricts the types of
queries that the service can answer. For example, a Web service
might provide a method that returns the songs of a given singer,
but it might not provide a method that returns the singers of
a given song. If the user asks for the singer of some specific
song, then the Web service cannot be called — even though the
underlying database might have the desired piece of information.
This asymmetry is particularly problematic if the service is used
in a Web service orchestration system.

In this paper, we propose to use on-the-fly information
extraction to collect values that can be used as parameter
bindings for the Web service. We show how this idea can be
integrated into a Web service orchestration system. Our approach
is fully implemented in a prototype called SUSIE. We present
experiments with real-life data and services to demonstrate the
practical viability and good performance of our approach.

L. I. INTRODUCTION
A. Motivation

There is a growing number of Web services that provide
a wealth of information. There are Web services about
books (isbndb.org, librarything. com, Amazon, AbeBooks),
about movies (api.internetvideoarchive.com), about music
(musicbrainz.org, lastfm.com), and about a large variety of
other topics. Usually, a Web service is an interface that
provides access to an encapsulated back-end database. For
example, the site musicbrainz.org offers a Web service for
accessing its database about music albums. The Web service
defines functions that can be called remotely. musicbrainz.org
offers the function getSongs, which takes a singer as input
parameter and delivers the songs by that singer as output. If
the user wants to know all songs by Leonard Cohen, she can
call getSongs with Leonard Cohen as input. The output will
contain the songs Suzanne, Hallelujah, etc.

Web services play a crucial part in the trend towards data-
centric applications on the Web. Unlike Web search engines,
Web services deliver crisp answers to queries. This allows the
user to retrieve answers to a query without having to read
through several result pages. Web services can also be used
to answer precise conjunctive queries, which would require
several searches on the Web and joins across them, if done
manually with a search engine. The results of Web services
are machine-readable, which allows query answering systems
to cater to complex user demands by orchestrating the services.
These are advantages that Web services offer over keyword-
based Web search.

Web services allow querying remote databases. However,
the queries have to follow the binding patterns of the Web
service functions, by providing values for mandatory input
parameters before the function can be called. In our example
of musicbrainz, the function getSongs can only be called if a
singer is provided. Thus, it is possible to ask for the songs
of a given singer, but it is not possible to ask for the singers
of a given song. If the user wants to know, e.g., who sang
Hallelujah, then the Web service cannot be used to answer
this question — even though the database contains the desired
information. This restriction is not due to missing data, but a
design choice of the Web service owner, who wants to prevent
external users from extracting and downloading large fractions
of its back-end database. On the client side, this is a highly
inconvenient limitation, in which the data may be available,
but cannot be queried in the desired way. We call this the
problem of Web service asymmetry.

Intuitively, a binary relation R is asymmetric with respect
to a set of functions, if the functions allow querying for one
argument of IR but not for the other one. Even among the most
prominent data-service providers, many relations are asym-
metric. We have examined isbndb.org, librarything.com, and
abebooks.com for books, internetvideoarchive.com for movies,
musicbrainz.org, last.fm, discogs.com, and lyricWiki.org for
music. Table 1 lists relations that can be queried for the second
argument, but not for the first.

citizenOf{pers,country)
bornin(pers,year)
livesIn(pers,place)
hasWon(pers,award)

rating(movie,x)
graduatedFrom(pers,univ)
published(book,year)
publishedBy(book,editor)

Asymmetric relations in Web services.

Fig. 1.

The asymmetric relations are by no means outlandish: It is
legitimate, e.g., to ask for singers who won a certain prize.
The only way to deal with such asymmetric Web services
is to try out all possible input values until the Web service
delivers the desired output value. For example, if the user
asks for the singer of the song Hallelujah, then we can use
a semantic knowledge base such as YAGO [1], Freebase' or
DBpedia [2] to get a list of singers. Then we call getSongs
with every singer, and remember those for which the Web
service returns Hallelujah. Obviously, this approach quickly
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becomes infeasible. The first limitation is runtime, with Web
service calls taking up to 1 second to complete. Trying out
thousands of singers that a knowledge base such as YAGO
contains could easily take hours. The second limitation is
the data provider itself, which most likely restricts aggressive
querying from the same IP address. If the asymmetric relations
could be queried on a case-by-case basis, without materializing
the entire function, then both the user and the provider would
be helped: The user, because she can answer her queries; and
the provider, because aggressive querying is avoided.

The functions exported by Web service APIs can be seen as
views with binding patterns [3]. There are several methods to
evaluate queries on such views efficiently [3—10]. Yet, these
approaches do not address the asymmetry issue. If faced with
an asymmetric relation, these approaches have to enumerate
an entire domain until they stumble upon the correct value.
Since the approaches assume an infinite budget of function
calls, they can afford to enumerate the domain. In the context
of Web services, however, this approach is out of question.

The problem is even more challenging, because asymmetric
relations may appear in query plans that orchestrate several
Web service functions. Assume, e.g., that the user wishes to
find the albums that feature the song Hallelujah. Assume that
we have a service that delivers the album of a song, if we
provide the id of the song. To retrieve the id of the song, we
have to call another function that requires the singer of the
song. This gives rise to a query composition tree where the
asymmetric relation is a leaf node. If an alternative service
composition also promises to deliver the album, then both
compositions have to be weighted against each other. This is
not trivial. Assume, e.g., a service that, given a song, delivers
songs that it inspired, together with their album. A service
orchestration system might call this service with Hallelujah,
retrieve inspired songs, and then call the service again with
these results, and again and again, in the vain hope to find the
album of Hallelujah. This way, it descends into a chaining
of derived songs. We show in this paper that, even if the
inverse functions are available, standard approaches to query
answering cannot prioritize them over the chains.

B. Contribution

In this paper, we develop a solution to the problem of Web
service asymmetry. We propose to use Web-based information
extraction (IE) on the fly to determine the right input values for
the asymmetric Web services. For example, to find all singers
of Hallelujah, we issue a keyword query “singers Hallelujah”
to a search engine. We extract promising candidates from the
result pages, say, Leonard Cohen, Lady Gaga, and Elvis. Next,
we use the existing Web service to validate these candidates.
In the example, we would call getSongs for every candidate,
and see whether the result contains Hallelujah. This confirms
the first singer and discards the others. This way, we can
use an asymmetric Web service as if it allowed querying for
an argument that its API does not support. We show how
such functions can be integrated into a Web orchestration
system, and how they can be prioritized over infinite chains of
calls. Our technique works only if the Web provides adequate
candidate entities. We show in our experiments that this is

the case in an interesting spectrum of applications. Our paper
makes the following contributions:

1) A solution to the problem of Web service asymmetry,
where input values for the Web services are extracted
on-the-fly from Web pages found by keyword queries.

2) A modification to the standard Datalog evaluation pro-
cedure that prioritizes inverse functions over infinite call
chains.

3) An experimental evaluation of our approach with the
APIs of real Web services, showing how we can improve
the performance of a real-world query answering system.

Our methods are fully implemented in the SUSIE system
(Search Using Services and Information Extraction). The rest
of this paper is structured as follows. Section II contains
preliminaries. Section III discusses execution plans. Section
IV introduces the key concept of inverse functions and their
scheduling. Section V discusses the generation of inverse
functions and their implementation. Section VI presents com-
prehensive experiments with real-world Web services. Section
VII discusses related work, and we conclude in Section VIII.

II. PRELIMINARIES

GLOBAL SCHEMA. A Web service defines an API of
functions that can be called over the Internet. Given some
input values, a function returns as output a semi-structured
document, usually in XML. In all of the following, we assume
that the set of Web service functions is known. We also
assume that all functions operate on the same, conceptually
global database with a unified schema. This is an important
assumption in our context, which we make in line with other
works in the area [3-8, 11, 12]. The mappings from the
actual schemas of the functions to the global schema can
be defined manually, or they can be automatically generated
using tools [13]. We see this as a challenge that is orthogonal
to the present work. The fact that the functions operate on
different data sources can be modeled by source designators,
as we shall see later. As a running example, consider the
global schema and the database shown in Figure 2.

sang hasTitle
singer  songld songld title
Cohen 1 1 Hallelujah
Elvis 2 2 All Shook Up
Elvis 3 3 Teddy Bear
onAlbum
songld album
1 Various Positions
2 Memphis To Vegas
3 Loving You

Fig. 2. A sample global database

FUNCTION DEFINITIONS. Users and application programs
do not have access to the global database. Rather, access
has to go through the functions provided by Web services
operating on the global database. For example, a function can
be getSongs(in:singer, out:songld, out:title). This function
expects singer as input and returns the song id and title as



output. In all of the following, i, ¢, a, and s will be variables
for song ids, song titles, albums, and singers, respectively.
If we call getSongs(Cohen, i, t), we receive as output i=1,
t=Hallelujah. Seen this way, the function provides a view on
the global database. More formally, and again in line with
[3-8, 11, 12], we see the Web service functions as views
with binding patterns over the global database.

Definition 1 (Function Definition): A function definition
over a global database schema is a rule of the form

FAXo)  ri(X1), ra(X2), .. rn(X0)

where 1,79, .. .7, are database relations and the X; are tuples
of variables and/or constants. All variables of the head must
occur in the body of the rule. A is the adornment of the
function. It is a string of length | X,| composed of the letters b
and f. The meaning of the adornment b is that a binding value
must be provided for the variable in that position, whereas the
adornment f does not impose such a restriction.

The function getSongs, e.g., can be written as follows:

getSongsbf T(s,i,t) <hasTitle(i,1), sang(s,i)

This rule defines how the Web service provider computes
the function gerSongs. From the caller’s point of view, the
adornment bff states that getSongs can be called only if a value
for s is provided. The evaluation of the function call binds
the variables 7 and ¢ to the values that satisfy the conditions
hasTitle(i,t) and sang(s,i). Variables that appear in the body
of the rule, but not in its head are called existential variables.
For example, a function may return all albums by a singer:

getAlbums® (s,a) <sang(s,i), onAlbum(i,a)

Again, this rule specifies how the Web service provider com-
putes the function. These functions are the only way for a user
or application to access the global database.

INCOMPLETE FUNCTIONS. Web services are often
incomplete. Suppose, e.g., that musicbrainz contains only
Elvis. We model this incompleteness by source designators.
A source designator is an atom that can be appended to the
body of a function to indicate that the underlying data source
is incomplete. In the example, we define

getAlbumsz{b(s,a)% sang(s,i), onAlbum(i,a), mb(s)

where mb(s) is a global relation that holds for those singers
that musicbrainz knows. Appropriate source designators can
model the fact that some functions of the same Web service
talk about the same entities, or conversely, that functions of
different services operate on different data sources.

DATABASE FUNCTIONS. In some cases, the user has
access to a database or knowledge base such as YAGO
[1] or DBpedia [2]. These databases can also be seen as
(incomplete) functions on the global database. They have
only f-adornments and no b-adornments, and whenever they
are called, they are instantiated with tuples from the database.
The following function, e.g., is a database function that
delivers all singers from YAGO:

getSingersZJ;ago(s)% sang(s,i), yago(s)

QUERIES. We consider the evaluation of conjunctive
queries defined over the global schema. For uniformity and
in line with [3, 11] we adopt the Datalog notation for queries.

Definition 2 (Query): A query is a datalog rule of the form

q(Xo) {— 7”1()21),7"2()22), .. Tn(Xn)

where r1, 7o, .. .7, are database relations and the X; are tuples
of variables and/or constants. All variables of the head must
occur in the body of the rule.

The following query, e.g., asks for the singer of Hallelujah:

q(s) <—hasTitle(i, Hallelujah), sang(s,i)

Variables that appear in the body of the rule, but not in its
head are called existential variables. An answer to a query is
an answer to the query on the global database. In the example,
an answer to the query is s=Cohen.

III. EXECUTION PLANS

GoOAL. Our goal is to answer queries by using only
function calls. This goal is in line with the works [3, 7,
8]. The difficulty in answering queries lies in the fact that
the query is formulated in terms of the global schema,
not in terms of the functions. This is because the query
expresses an information need, and not yet a constructive
procedure. Since the user does not have access to the global
database, we cannot execute the query directly on the tables
of the global database. Rather, the algorithms automatically
translate the query into query plans expressed in terms of
the available Web service functions, respecting their binding
pattern restrictions. This is a non-trivial endeavor that we
discuss next.

Different from previous work, we consider a given budget
of calls. This changes the goal of the evaluation. Previous
work aimed to compute the maximal number of query answers.
The goal was to compute the maximal contained rewriting.
Unfortunately, when the views have binding pattens, even
the evaluation of conjunctive queries requires rewritings of
unbound length [3]. Thus, these works will produce pipelines
of calls of an unbound length in order to obtain the maximal
number of answers. This is infeasible in the context of Web
services. Our goal, in contrast, is to compute the largest
number of answers using the given budget of calls. Hence,
we have to prioritize calls that are likely to lead to an answer.
This is different from the problem of join ordering in previous
work. Therefore, we have to use a different model for the query
answering process: our execution plans are ordered sequences
of calls rather than ordered join plans.

EXECUTION PLANS. Consider the following query, which
asks for albums by Cohen:
qi(a) <—sang(Cohen,i), onAlbum(i,a)

We cannot access the tables sang and onAlbum directly. Rather,
we have to access the tables through functions. Suppose, e.g.,
that we have the following functions:

getAlbum® (i,a) <onAlbum(i,a)
getSongs®Tf(s,i,t) «sang(s,i), hasTitle(i,t)



We can first call getSongs®// (Cohen, i, t), which will return the
ids and titles of all songs by Cohen (i.e., i=1, t=Hallelujah).
Then, we call getAlbumbf f (i,a) with every binding of ¢, which
will give us values for a. In the example, there is only one
value, a=VariousPositions. The sequence of calls is:

getSongsbff(Cohen, i t), getAlbumbff(i,a)

This is a valid execution plan, because every b-argument of
a function will have a value at execution time. We make this
notion more formal now.

Definition 3 (Function Call): A function call of a function
f is a literal of the form f(X), where X is a sequence of
variables and constants of the same arity as f.

In the example, getSongs®?f(Cohen,i,t) and getAlbum®f/ (i t,a)
are function calls.

Definition 4 (Consequences): The consequences of a func-
tion call f(X) are the body atoms of the function definition
of f, with variables substituted by the values from X. Exis-
tential variables of f are substituted by fresh variables in the
consequences.

In the example, the consequences of getSongs®//(Cohen,i,t)
are {hasTitle(i,t), sang(Cohen,i)}.

Definition 5 (Execution Plan): An execution plan for a

query @ is a sequence of function calls. Each argument in
the execution plan has to be either (1) a constant symbol that
appears in ) or (2) a variable.
The plan is admissible if, for every variable, the first occur-
rence of the variable in the call sequence is in an f-position
of a function call. The plan is effective if all body atoms of
@ appear in the conjunction of the function call consequences
(where existential variables of ) can be matched with any
variables or constants in the consequences). Let us look again
at our sample plan above. The plan is admissible because
every b-argument of a function call is either a constant or has
been bound by a previous function call. The plan is effective
because the query atoms sang(Cohen, i), and onAlbum(i,a)
appear in the conjunction of the consequences of the calls:

sang(Cohen, i), hasTitle(i,t), onAlbum(i,a)

GUESSING PLANS. Not all plans are promising. Assume, e.g.,
that the user asks for the album and singer of Hallelujah:

qs(a,s) <hasTitle(i, Hallelujah), onAlbum(i,a), sang(s,i)
Assume that we have the following functions:

getSongInfobfff(i, t,5,a) <—hasTitle(i,t),sang(s,i),onAlbum(i,a)
getRelSongs® T (t1, iy, ty) < influenced(iy, i),
hasTitle(i1,1t1), hasTitle(io,t2)

The first function returns all information about a song id.
The second function returns the id and title of a song that
was influenced by the input song title. A similar function is
published by musicbrainz. This allows for the following plan:

getRelSomgsbff(Hallelujah,i27 ta),
getSongInfo®f 11 (iy, Hallelujah,s,a)

This plan starts with the song Hallelujah, and finds which
songs it influenced. Each of these songs comes with an id i

and a title £o. Then the plan calls getSongInfo®/’/ to check
whether 72 was by any chance the id of Hallelujah, in which
case we get the singer s and the album a. Obviously, this is
unlikely to succeed in reality. We call such a plan a guessing
plan (a notion that we will make more precise later).

UNBOUND GUESSING PLANS. In some cases, there are
infinitely many guessing plans. Our query ¢s, e.g., gives rise
to the following unbound number of plans:

getRelSongsbff(Hallelujah,ig, ta),
getRelSongsbff(ig,i3,t3), o, getRelSongsbff(in,l, In,tn),
getSongInfo® 11 (i, Hallelujah,s,a)

These plans will enumerate the entire domain of songs,
in order to “guess” the input value of getSonglnfo®’ff. In
general, there can be infinitely many pipelines for a given
query under a given set of functions [14]. We call such plans
unbound plans. The goal of SUSIE is to avoid guessing plans
and unbound guessing plans by adding inverse functions.

IV. EXECUTION PLANS WITH INVERSE FUNCTIONS

This section will introduce the core contribution of SUSIE,
inverse functions. We will show how to prioritize them over
guessing plans.

A. Adding Inverse Functions

Let us consider again the query for the singer and album of
Hallelujah:

qa(a,s) <hasTitle(i, Hallelujah),onAlbum(i,a),sang(s,i)
As before, we have the following functions:

getSongInfobfff(i, t,5,a) <—hasTitle(i,t),sang(s,i),onAlbum(i,a)

getSongsbf F(s,it) <—sang(s,i), hasTitle(i,t)

getAlbum"f (i,a) <—onAlbum(i,a)

getRelSongs® T (t1, iy, to) —influenced(iy, i),
hasTitle(i1,t1), hasTitle(io,t2)

We have already seen that these functions lead to the enumer-
ation of the domain of songs by unbound guessing plans. Now
let us add the following function:

getSingerbf(t,s) <sang(s,i), hasTitle(i,t)

This function retrieves the singer of a song. It has the same
body as getSongs®/f, but a different binding pattern. We call
it an inverse function of getSongs®//, because it allows asking
for the input parameter of getSongs®//. If this function is
provided, then the query that asks for the singer and album of
Hallelujah can be answered by the following plan:

getSinger® (Hallelujah,s), getSongs®/f (s, Hallelujah, i),
getAlbum®f (i,a)

This plan first retrieves the singer of Hallelujah, s. Then, it
retrieves all songs by s, and hopes that Hallelujah is one of
these songs. Since the previous function call ensured that s is
the singer of Hallelujah, this song will indeed be among the
outputs of getSongs®//. This call yields the song identifier 1,
which can then be used to call gerAlbum®? and retrieve the
album. Thus, the addition of the inverse function allows us to



produce answers to the query without guessing. We will now
discuss how to prioritize such functions in execution plans.

B. Standard Approaches to Query Answering

TRANSFORMATION TO DATALOG. The standard way of
answering queries with binding patterns is to transform
the function definitions into inverse rules.” This yields a
Datalog program, on which the query can be evaluated.
An algorithm that is guaranteed to produce the maximal
contained rewritings was introduced in [11]. Techniques for
reducing the number of calls have been developed in [4, 5, 7].
Their goal remains the computation of the maximum number
of answers. As we shall show next, these methods cannot
prioritize plans with inverse functions over unbound plans.

INVERSE RULES. We illustrate the construction of the
Datalog program proposed in [11] for our function.

getRelSongs® T (t1, iy, to) < influenced(iy, i),
hasTitle(i1,1t1), hasTitle(io,t2)

For each body atom, we construct an inverse rule. The atom
forms the head of the inverse rule, while the body consists of
a dom atom for every bound variable of the function, followed
by the function call atom. In the example, this yields

influenced(f,is) <dom(t,), getRelSongs®Tf(t,,is,ts)
hasTitle(ia, t2)  <dom(t,), getRelSongs®?f(t,,ia,ts)
hasTitle(f1,t1) <dom(t,), getRelSongs®?f(t,,ia,ts)

where f1 = f(t1,getRelSongs) is a Skolem term [15] that
replaces the existential variable ¢;. Furthermore, we add one
domain rule for every f-variable of the function. These rules
look similar to the inverse rules, but have dom in their head:

dom(is) <+dom(ty), getRelSong,mbff(2517 i2,t2)
dom(ty) <dom(t,), getRelSongsbff(tl, i2,12)

In addition, we add a domain rule with an empty body for
each constant of the query. For the query ¢o, we get:

dom(Hallelujah) <—

This way, we can produce a Datalog program for a given query
and a given set of function definitions. If the body predicates
of a rule are evaluated left to right, then this program ensures
that all input parameters of a function call are bound before
the function is called.

EVALUATION STRATEGIES. Even if inverse functions
are present, a Datalog evaluation strategy has to enumerate
all unbound plans in the worst case. This is because these
plans may be the only plans that yield results. Thus, unbound
plans cannot be excluded upfront. In [11], the authors suggest
to use a bottom-up approach for evaluating the new Datalog
program. This is guaranteed to compute the maximum
number of answers. However, it will also enumerate entire
domains (e.g., all singers), and call all possible functions
on all possible constants — no matter whether these calls
contribute to the answer of the query or not. Obviously,
this approach is infeasible in the context of Web services.

2Inverse rules have nothing to do with the inverse functions of SUSIE.

Magic-set techniques [16] have been developed for optimizing
bottom-up evaluations to ressemble top-down evaluations.
This technique simulates the QSQ technique [15] for top-
down evaluations. We consider next the top-down evaluation
of the new Datalog program and we show that even if an
inverse function can avoid a guessing plan, standard top-down
evaluation techniques cannot prioritize such plans.

BLINDNESS TO INVERSE FUNCTIONS. Let us now consider
the top-down evaluation of

qs(a,s) <hasTitle(i, Hallelujah),onAlbum(i,a),sang(s,i)

Figure 3 shows how the atom hasTitle(i, Hallelujah) is
expanded in two possible SLD (Selective Linear Definite)
derivation trees using the rules of the new Datalog program.
Although the SLD trees are constructed top-down, the evalu-
ation of the calls is bottom-up.

The left derivation tree is the guessing strategy: It starts with
dom(Hallelujah), and then calls getRelSongs®¥ 1 (1,i, Hallelujah)
with t=Hallelujah. It “hopes” that Hallelujah is a related song
for itself. Then it calls getSongInfo®//f in a new branch. The
right derivation tree, in contrast, uses the inverse function:
It first calls getSinger®(s,t) with r=Hallelujah. This yields
the singer of Hallelujah, s. Then it calls getSongsbf f (s,i,t)
with that singer s. This yields the id of Hallelujah. A call to
getAlbum®/ (i,a) in a different branch will yield the album a.

However, nothing allows the Datalog processor to distin-
guish which of the two plans at Figure 3 is better. One may
even think that the left plan is better since it uses less calls
than the right one. This is because the crucial link between
getSongsTf(s,it) and getSinger®f(s,t), namely the fact that
both functions share the same body, gets lost in the transfor-
mation to Datalog. Worse, the left plan can be extended to an
unbound guessing plan, in which the bottom dom(Hallelujah)
is replaced by a branch where getRelSongs®/? is repeatedly
applied to its own outputs. Standard Datalog evaluation cannot
prioritize inverse functions over guessing plans, because the
link between getSongs®’f(s,i,t) and its inverse is lost.

C. Our Approach to Query Answering

SMART FUNCTION CALLS. We will now make the notion of
“guessing” formal. We aim to distinguish the guessing plan

getRelSongs®f T (Hallelujah,is, t2), getSonglnfo®f 11 (iy,Hallelujah,s,a)

from the “smart plan”

getSinger® (Hallelujah,s), getSongs®/f (s, Hallelujah, i),
getAlbum® (i,a)

Definition 6 (Smart Function Call): A smart function call
in an execution plan is a function call whose inputs come
from the query or from previous smart function calls, and
whose consequences are a subset of the consequences of the
following function calls.

In the example, the call to getSinger®? (Hallelujah, s) is a smart
function call, because its consequences ({sang(s,Hallelujah)})
are a subset of the consequences of the following calls,
{sang(s,Hallelujah),hasTitle(i,Hallelujah),onAlbum(i,a)}. The
call getRelSongs®fT of the left plan, in contrast, is not a smart



hasTitle(i, Hallelujah), sang(s, i), onAlbum(i, a)
dom(t), get RelSongs®/f (t,i, Hallelujah)

dom(Hallelujah)

Fig. 3.

function call. It guesses that its output will be the desired input
of the following call to getSongInfo’f!. Obviously, smart
function calls should be preferred wherever possible. We can
give the following theorem to support this intuition.

Theorem 1 (Smart Function Calls): Given a query @), and
given an effective execution plan E for (), such that there is
some choice of input variables such that E returns answers
to @, the following holds: If we can add smart function calls
to F, so that E/ becomes admissible, then £ will deliver an
answer for Q).

Proof 1: Assume that there is an effective execution plan
E for a query @, such that there is some choice of input
variables such that E returns an answer A for (). Consider a
function call f(X), so that the consequences of f(X) are a
subset of the consequences of E. Be f A E the conjunction
of the consequences of f(X) and the consequences of FE.
Then the evaluation of f A E on the global schema has the
same results as the evaluation of the consequences of E on the
global schema. Hence, the evaluation of f A E will contain A.
If f(X) makes E admissible, then E with f(X) will deliver
A.

Intuitively, Theorem 1 tells us that smart function calls will not
deteriorate the chance of obtaining an answer from a function
composition. That is, if we have a function composition that
can deliver answers to the query, but where we need to bind
the inputs, then adding the smart function calls to bind the
inputs is a safe step. Note that such a proof cannot be given
for non-smart function calls. This justifies the preference of
smart function calls over non-smart function calls.

ALGORITHM. We will now discuss how to prioritize
smart function calls in SLD derivations. The key idea is
that every function call has to answer either an unanswered
query atom, or to have consequences that are contained in the
conjunction of the consequences of the following calls. In the
right plan in Figure 3, the consequences of getSinger® are:

sang(s,i), hasTitle(i, t)

These consequences are contained the consequences of the
following calls getSongs®’f and getAlbum®?:

sang(s, i), hasTitle(i, Hallelujah), onAlbum(i,a)

Therefore, this call is a smart function call and the plan should
be prioritized. Let us now look at the left SLD tree. The
consequences of getRelSongs®f/ are:

hasTitle(i, Hallelujah), influenced(i”, i), hasTitle(i”, t)

These consequences are not in the consequences of the fol-
lowing call:

hasTitle(i, Hallelujah), sang(s, i), onAlbum(i, a)
dom(s), getSongs®'7 (s, i, Hallelujah)
dom(t), getSingert? (t, s)

dom(Hallelujah)

Sample SLD derivations for g: without the inverse function (left), and with the inverse function (right).

hasTitle(i, Hallelujah), sang(s,i), onAlbum(i,a)

Therefore, this plan should be postponed. Non-smart function
calls cannot always be avoided. But plans with less non-
smart calls are more likely to succeed. This ordering strategy
can be added to a standard Datalog processor. This allows
the query evaluation to prioritize smart function calls over
guessing function calls.

V. INVERSE FUNCTIONS

The previous section has shown how inverse functions can be
prioritized in execution plans. The present section will show
how inverse functions can be generated and implemented.

A. Definition

ASYMMETRIC RELATIONS. Consider a function definition
that contains a relation 7:

fb...bf...f(xl’ B

ey X)) e T (Thy )
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Let us consider a query atom 7(yg,...,¥;), in which some
arguments are bound and some arguments are unbound. Thus,
the query atom defines a binding pattern of bound and free
variables on r, A,. If A, does not provide bound values for
all input arguments of f, then f cannot be called. We say
that f does not support the binding pattern A,.. If the set of
functions F' contains no function that supports A,., then we say
that A, is unsupported in F. If there exists a binding pattern
of r that is supported in F', and if there exists another binding
pattern that binds at least one variable and that is unsupported
in F', then we say that r is asymmetric with respect to F'.
Intuitively speaking, this means that there are arguments of
r for which we can query and there are other arguments for
which we cannot query.

INVERSE FUNCTIONS. If a function f does not support
a binding pattern of a relationship, then the query evaluation
might have to enumerate an entire domain to “guess” input
values. Therefore, we introduce the inverse functions of f.
Definition 7 (Inverse Function): Given a function f4(Xy),
an inverse function of f is a function f4'(Xy) with the same
rule body. A’ is an adornment that has at least one bound
argument, and that leaves at least one input argument of f
free. As an example, consider again the following function:

getSongs®T I (s,i,t) «<sang(s,i), hasTitle(i,t)

This function requires the singer as input, and delivers the
song id and title as output. It has 3 inverse functions:

getSongsffb(s, i,t), getSongsfbf(s, it), getSongsfbb(s,i, t)



ADDING INVERSE FUNCTIONS. Inverse functions can
be used to answer query atoms that have an otherwise
unsupported binding pattern. Yet, inverse functions are not
always necessary. If, say, there is a function f that supports
the desired binding pattern for a relation, then it is not
necessary to add an inverse function for some other function
g that does not support the desired binding pattern. However,
in the context of Web services, the inverse of g would still
be necessary in order to obtain as many results as possible.
This is because Web services are typically incomplete. The
function f may not yield all the instances that g stores. Thus,
one potentially loses results if one queries only f.

Even if f is complete, it can still be beneficial to have the
inverse of g. This is because Web services typically come at
a cost. This can be a cost in bandwidth, in time, or also in
financial terms (for commercial Web services). It can be that
the inverse of g is cheaper than f. In this case, the inverse of
g can still be preferable to f.

Now assume that there is an orchestration of functions
that allows finding the input values for g, so that g delivers
instances even for an unsupported binding pattern. Since Web
services tend to be incomplete, this orchestration might still
not find all input values of g. Thus, g might store more
instances than can be obtained this way. Thus, the inverse
of g is still necessary to maximize the number of results.

In all of these cases, the inverse of g proves useful to have —
be it to maximize the number of results or to minimize the cost
of calls. Therefore, we aim to add as many inverse functions
to our program as possible.

B. Implementation

PROVIDING INVERSE FUNCTIONS. We will now explain how
certain inverse functions can be provided and implemented.
Our method is intended for cases where at most one input
argument of the original function is unbound, and where
the necessary information appears on the surface Web. We
discuss these limitations in Section V-C. As an example,
consider again the function getSongs:

getSongs®Tf (s,i,t) «<—sang(s,i), hasTitle(i,t)

Information about singers and songs are likely to appear on the
Web. Therefore, we can provide the inverse functions where
one of these values is bound. As an example, consider

getSongsffb(s, i,t) <—sang(s,i), hasTitle(i,t)

Our system, SUSIE, implements this inverse function as
follows. Whenever getSongsf f b(s, i,t) is called, SUSIE issues a
keyword query of the form “Singer ¢” to a Web search engine
(e.g., “Singer Hallelujah”). Then, SUSIE will extract possible
candidates for s from the result Web pages. Last, SUSIE will
call the real Web service getSongsbf f (s,i,t) with all candidates
for s. If any of them succeeds and delivers the given ¢ as
output, then SUSIE returns the values of s and ¢ as an output of
the inverse function getSongs’f®. Thereby, the inverse function
acts just like a real Web service function. We will now discuss
three subtasks of this endeavor: (1) the task of finding suitable
Web pages, (2) the task of extracting candidates from the
Web pages, and (3) the task of verifying the results. In all of

the following, we treat the generic case of implementing the
inverse functions for a function fb-%/~/(zy ... x,), where
the first argument of the inverse function is unbound.

FINDING WEB PAGES. We assume that the function f
comes with a domain for its free argument x;, the farget type.
In the example of getSongs, we know that the target type is
Singer. We map each inverse function f# of f to a keyword
query. This keyword query is a string of the form ¢ X,
where tt is the target type and X are the bound variables of
A. In the example, the keyword queries are

getSongsffb(s, i,t): “singer t”
getSongsft(s,it): “singer t "

In actual implementations, the keyword queries can be more
sophisticated. For example, it may turn out to be beneficial to
map getSongsf®(s,i,t) to the keyword query “List of singers
who sang ¢”, ignoring the song id ¢. Whenever the query
evaluation calls the function f#(xy,...,,), SUSIE issues
the keyword query of f“ to an Internet search engine (we
used Google). SUSIE collects the top ten result Web pages.

EXTRACTING CANDIDATES. Once the Web pages have
been retrieved, it remains to extract the candidate entities.
Information extraction is a challenging endeavor, because
it often requires near-human understanding of the input
documents. Our scenario is somewhat simpler, because we
are only interested in extracting the entities of a certain type
from a set of Web pages. We have implemented two simple
yet effective IE algorithms as a proof of concept.

String Matching Algorithm. This algorithm extracts only
entities that are already known to a knowledge base. In our
experiments, we use the YAGO knowledge base [1]. YAGO
feeds from Wikipedia and thus covers a large number of
entities of common interest. The algorithm first loads all
entities of the target type from the knowledge base into a
trie [17]. Then the algorithm runs through the Web pages and
extracts all entities from the documents that appear in the trie.
This processing can be done in time O(n) in the best case
and in time O(m - n) in the worst case, where n is the total
number of characters in the Web pages and m is the number
of characters in the longest entity name.

Structured Extraction Algorithm. The String Matching Al-
gorithm has the disadvantage that it can only find entities that
appear in the knowledge base. If we wish to venture beyond
this limitation and find new entities, we may exploit that many
result Web pages will have a structured form. Typically, tables
represent a natural way to organize sets of relationships in
Web pages. However, as shown in [18], only a small fraction
of the Web tables are encoded using the <table> markup
in HTML. In many cases, they are encoded using lists or
loosely repetitive structures. Our algorithm identifies structures
of repetitive rows, where each row contains items that are
separated by special strings or tags that re-appear in each
row. Furthermore, the items in one column have to be of the
same syntactic type (numbers, strings or dates). This procedure
finds standard tables and standard lists as well as other types
of repetitive structures. By comparing the elements of each
column with the instances of the target type in YAGO, our



algorithm finds the column that constitutes most likely the
answers to the query.

We note that these are just two possible implementations.
They can be replaced by more sophisticated ones [19, 20].

VERIFYING CANDIDATES. The IE algorithms have delivered
a set of candidate entities for the free argument z; of f.
In case of the String Matching Algorithm, these candidates
have been filtered by a knowledge base. Still, this does not
mean that the candidates would be correct: Web pages can
contain many more entities of the target type than the desired
ones. Therefore, all candidates have to be checked by the
Web service to see whether they fulfill the conditions of the
function definition. To do so, SUSIE will call the original
Web service function f with all of these candidate entities,
one after the other. This yields one, multiple, or no result
tuples of the form (x1,...,x,) for each candidate entity x;.
If the values in the bound positions of A correspond to the
input values of the inverse function call f4(z1,...,z,), then
SUSIE delivers the tuple (z1,...,x,) as an output of the
inverse function. Thereby, each candidate entity that has been
extracted from the Web pages is verified by the Web service.

C. Properties of SUSIE

IE AND WEB SERVICES. The candidate entities often
appear multiple times in the Web pages. This increases the
chances of an IE algorithm to find them. A high precision
and a high recall are desirable for the IE algorithms, but they
are not strictly necessary. If the precision of the extraction
is low, this will result in more Web service calls, but not
in diminished precision of the final query answers. This
is because all answers are checked by the Web service. If
the recall this low, this will result in fewer answers. Fewer
answers, however, are better than trying out all possible
input values for the function, which may result in no answer
at all due to the limited call budget. By verifying each
result with the original Web service, our approach mitigates
the central weakness of classical information extraction, its
imperfect precision. By using information extraction to extract
candidates, our approach mitigates the central limitation of
Web services, the restrictive access patterns.

LIMITATIONS OF SUSIE. The current implementation
of SUSIE creates inverse functions only if at most one input
argument of the original function is unbound. The case
of functions with multiple unbound inputs is significantly
harder: It could require fact extraction of m-ary facts. This
is, by itself, a hard problem. If one uses a naive entity
recognition algorithm (such as the string matching algorithm),
then one can generate a number of candidate tuples that is
exponential in the number of inputs. Therefore, we leave the
case of multiple inputs for future work. As we show in the
experiments, even the case with one input delivers significant
mileage in practice.

We can implement inverse functions only if good candidate
entities for a query can be found on the Web. This is
certainly not true for a large number of functions. In these
cases, we do not provide the inverse functions. However,
experience from our experiments indicates that information

of common interest is publicly available on the Web in a
large spectrum of cases. In these cases, we can provide the
inverse functions. Our claim is not that SUSIE could make
all queries answerable. Rather, our claim is that SUSIE can
make queries answerable in an interesting spectrum of cases.
Our experiments show that in these cases, SUSIE improves
the query results drastically.

VI. PERFORMANCE EVALUATION

We conducted 2 types of experiments. We first evaluate the
performance of the information extraction algorithms. Then,
we evaluate the performance of SUSIE on real-world queries.

A. Information Extraction

TEST SET. To evaluate the IE algorithms, we targeted
three query types: Queries that ask for actors with a certain
birth year, for actors with a certain nationality and for authors
who received a certain prize. For each query type, we chose
10 arbitrary property values (10 birth years, 10 nationalities
and 10 literature prizes). For each property value, we
generated the keyword query that SUSIE would generate, sent
it to Google and retrieved the top 10 pages. This gave us 100
pages for each test set. The pages are quite heterogeneous,
containing lists, tables, repetitive structures and full-text
listings of entities. We manually extracted the target entities
from these pages to create a gold standard. Then, we ran the
IE algorithms and measured their performance with respect
to the gold standard.

DATABASE COMPETITOR. In SUSIE, the extraction
algorithms are used to generate candidates for the input
values for Web services. Query evaluation algorithms without
this capability need to generate the input values for Web
services by enumerating a domain. For example, while SUSIE
will guess actors born in 1970 by searching for “actors 1970”
on the Web, a non-IE-based query evaluation will guess
actors born in 1970 by enumerating all available actors. To
judge how many of the candidate actors would actually be
actors born in 1970, we report the number of entities of
the target type in the YAGO database that have the desired
property. For example, for actors born in 1970, we report the
proportion of actors in YAGO that are born in 1970 (among
those actors that have a birth date). This is an estimator
for the chance that a candidate generated by enumerating a
domain will be a valid input value for the Web service.

REsuLTS. Figures 4, 5, and 6 and show the results.
Every row contains the values averaged for 10 Web pages.
#E is the average number of entities per page. SMA is
the String Matching Algorithm, and SEA is the Structured
Extraction algorithm. The column “DB” is the naive algorithm
of regarding all instances of the target type in the YAGO
database as candidates. The precision and recall of the IE
algorithms are nearly always in the range between 30%
and 75%. Only the precision on the birth year queries is
disappointing, with values below 10% (Figure 5). This is
because the Google queries returned lists of all actors, not
just of the ones born in a certain year. Thus, the algorithms
find far too many irrelevant entities in the pages. The SMA,



with its slightly higher recall, suffers particularly for the
precision. We record this as a case where the information
extraction approach is less practical, because the Internet
does not provide the lists of entities that the approach needs.

Award #E SMA SEA DB
Prec Rec Prec Rec Prec
Franz Kafka 2 25 % 73 % 13 % 34 % N/A
Golden Pen 9 13% 3% | 29% 56% N/A
Jerusalem 6 23 % 52 % 69 % 24 % N/A
National Book 69 | 38% 59% | 45% 6% 0.9 %
Nobel Prize 44 | 41 % 29% | 46% 40 % 2.9 %
Phoenix 4 | 47T% 71 % 18% 76 % N/A
Prix Decembre 4 29 % 6 % 18 % 25 % N/A
Prix Femina 21 [ 31% 13% | 32% 32% 0.6 %
Prix Goncourt 73 63 % 46 % T % 1 % 1.12%
Pulitzer 42 | 8% T19% | 60% 46 % 2.0 %
27 | 43% 44 % | 34 % 35% 1.5%
Fig. 4. 1IE Results for “Authors who won prize X”
Year #E SMA SEA DB
Prec Rec Prec Rec Prec
1940 2 2% 13 % 1 % 80 % | 0.8 %
1945 1 2% 96 % 1% 100 % 1.0 %
1950 2 2% 81 % 1 % 83 % 1.2 %
1955 2 6% 39% 3% 56 % 1.2 %
1960 18 12% 60 % 6 % 72 % 1.3 %
1965 8 7% 72 % 14 % 71 % 1.5 %
1970 41 20% 96 % 1 % 66 % 1.7 %
1975 2 8% 91 % 1% 67 % 1.6 %
1980 6 8% 52 % 4 % 90 % 1.6 %
1985 2 8% 56 % 0 % 43 % 1%
5 9% 71 % 3% 74 % 1.3 %
Fig. 5. 1IE Results for “Actors born in year X”
Country #E SMA SEA DB
Prec Rec Prec Rec Prec
Australia 15137% 8% | 51% 66% 11%
Canada 5128% 92% | 40% 50 % 20%
England 46 | 46 % 85 % | 71 % T4 % 0 %
France 153 | 8% 42% | 50% 64 % 2 %
Germany 45 1 50% 57T% | 51 % 99 % 2 %
Greece 26 | 38% 58 % 2% 14 % 0 %
Ttaly 138 | 29% 54% | 2% 59 % 0%
Mexico 25 | 4% 52% | 51 % 18 % 0 %
South Africa 121 29% 76% | 29% 63 % 0%
Spain 24 | 4% 63% | 67% 94 % 0 %
47 | 38% 65% | 46% 63 % | 35%
Fig. 6. 1IE Results for “Actors of nationality X”

DISCUSSION. A precision of 30% may not sound
extraordinary. Yet, it has to be seen in comparison to
the naive approach of sending all entities of the target type
to the Web service. In general, the proportion of entities in
the database that have the desired property is very low. The
percentages for writer awards are already an overestimation,
because they consider only those writers that did win an
award, while many writers do not win any award at all in
their life. So let us e.g. assume that 1% of the entities have
the desired property. This means that an expected 100 calls
would have to be sent to the Web service before finding one
of them. This number of calls is already above the budget
we are considering, meaning that the user would likely not
get any response at all. An IE precision of 30%, in contrast,
means that for every 3 queries that are sent to the Web
service, only 2 are sent in vain. Likewise, a recall of 30%
means that we can find one third of the entities that the user
is potentially interested in — as opposed to none if the call

Service |Function

Music- getArtistsl;lflff (artist,id, born, died)

Brainz getAlbumsf,,{lff (album, id, artist, releaseDate)

Abe- getBooksByTitleZ{gff (title,id, isbn, author, publisher)

Books getBooksByIsan{({ff (isbn, title, id, author, publisher)

getBooksByAuthorZ{fff (author, title, id, isbn, publisher)

Library- getAuthors?fffff(a:, born, prize, country, school, place)

Thing getBooks?tffffff (title, author, prize, publicationDate)
Fig. 7. Some of the functions integrated in SUSIE

budget is exhausted by enumerating a domain. Thus, even in
the cases with lower precision, our approach allows answering
queries that would be impossible to answer otherwise.

B. Real-world Queries

In this section, we evaluate our approach on real queries with
real Web Services.

WEB SERVICES AND QUERIES. We integrated 40
functions exported by 7 Web service providers:
isbndb.org, librarything.com, Amazon, AbeBooks,
api.internetvideoarchive.com, musicbrainz.org, lastfm.com.
Figure 7 shows the signatures of some of these functions. We
selected a variety of query templates, which can be organized
in the following classes (Figure 8): star queries with constants
at the endpoints (Q1-Q2, @7), star queries with variables
and constants at the endpoints (Q3-Q4, Qs-Q10), and chain
queries with constants at the endpoints (Q5-Qg, (Q11). For
every query template, we evaluate a set of similar queries
by varying the constants. The queries were chosen such that
they have different alternative ways of composing function
instantiations. Usually, this leads to a high number of Web
service calls.

SETTINGS AND ALGORITHMS. We distinguish two settings.
In the first setting we try to answer the query using only
Web services. We compare 3 different approaches. The first
approach (“TD”) uses a naive top-down evaluation of the
queries without inverse functions. This approach implements
a Prolog-style backtracking strategy. The second approach
uses ANGIE [12] for the query evaluation. ANGIE is a state-
of-the-art system for top-down query evaluation with views
with binding patterns. The third approach uses SUSIE, i.e.,
the approach uses both Web services and inverse functions.
We used the SEA algorithm for IE.

In the second setting, we allow the approaches to make use
of the YAGO knowledge base [1]. The first approach in this
setting is a baseline solution, which simply issues the query to
YAGO, and does not call any functions. The second approach
is YAGO+TD, which is allowed to use both functions and the
YAGO knowledge base. This means that it can retrieve answers
from YAGO, it can retrieve answers from functions, and it
can also use data from YAGO to call the functions. The third
approach is YAGO+ANGIE, and the fourth is YAGO+SUSIE.
Only SUSIE uses inverse functions. For all the algorithms, we
set the budget to 15 for the number of calls to one service
and to 100 for the total number of calls. As performance
metrics, we measured the total number of answers output by
each algorithm.

RESULTS. Figure 9 shows the results for the queries



No. Query Constants

Q1 type (?person, Writer) p
wonAward (?person, p)

Q2 type (?person, Writer) e
wonAward (?person, p)
isCitizenOf (?person, c)

Q3 type (?person, Writer) p
wonAward (?person, p)
wrote (?person, ?book)

Q4 type (?person, Writer) D, C
wonAward (?person, p)
isCitizenOf (?person, c¢)
wrote (?person, ?book)

Q5 type (?person, Writer) DYy
wonAward (?person, ?prize)
isTitled (?prize, p)
awardedInYear (?prize, y)

Q6 type (?person, Writer) p
wrote (?person, ?book)
wonAward (?person, ?prize)
isTitled (?prize, p)
awardedInYear  (?prize, y)

Q7 type (?person, Actor) c
isFamousActor (?person, True)
isCitizenOf (?person, c¢)

Q8 type (?person, Actor) c
isFamousActor (?person, True)
isCitizenOf (?person, c¢)
actedIn (?person, ?movie)

Q9 type (?person, Actor ) p
wonAward (?movie, p)
actedIn (?person, ?movie)

Q10 type (?person, Actor) P
wonAward (?movie, p)
producedIn (?movie, ?country)
actedIn (?person, ?movie)

Q11 type (?person, Singer) Py
sang (?person, ?song)
wonAward (?person, ?prize)
isTitled (?prize, p)
awardedInYear  (?prize, y)

Fig. 8. Query templates

corresponding to the templates in Figure 8. We report the
number of answers for all algorithms in both settings: With
only functions and with both functions and YAGO. In both
settings, all algorithms consume their entire budget of calls.
Since all algorithms use the same number of calls, the total
number of answers returned by each serves as comparison
metric. For SUSIE we show the number of calls that were
consumed by the algorithm for two moments in time: when
the first answer was output (#cla) and when the final answer
was output (#cFa). Subsequent calls used up the budget, but
did not return answers.

In the first setting, where only functions can be used, only
SUSIE delivers any answers at all. This is because algorithms
without inverse functions have to compose existing functions
to compute answers, which often consumes the entire budget
before any answer is returned. It may also be just impossible to
find such a composition. In the second setting, the algorithms
can also use YAGO. YAGO already contains some answers to
the queries (reported in the column “YAGO”). All algorithms
first return these answers from YAGO, and then embark to
call functions. We observe that, for all queries, SUSIE returns
more answers than the two other algorithms, or at least an
equal number. For instance, for the first query of the template
(24, SUSIE outputs almost twice as many answers as ANGIE.

If we compare SUSIE with YAGO to SUSIE using just

functions, we remark that using YAGO improves the number
of answers in most cases. In some cases SUSIE performs
better without YAGO. This is because the query planner
sometimes chooses to enumerate a domain from YAGO, even
if the inverse function is present. In almost all cases, SUSIE
improves over the answers that YAGO alone provides. Even
for queries that have no answers in YAGO (@3 - four, Q6 -
four, 9, 10, Q11), SUSIE makes smart use of the database
to double the number of answers with respect to the case where
just functions are used.

VII. RELATED WORK

QUERY ANSWERING. Most related to our setting is the
problem of answering queries using views with limited
access patterns [3]. The approach of [3] rewrites the initial
query into a set of queries to be executed over the given
views. The authors show that for a conjunctive query over
a global schema and a set of views over the same schema,
determining whether there exists a conjunctive query plan
over the views that is equivalent to the original query is
NP-hard in the size of the query. This rewriting strategy
assumes that the views are complete (i.e., contain all the
tuples in their definition). This assumption is unrealistic in
our setting with Web services, where sources may overlap or
complement each other but are usually incomplete.

When sources are incomplete, one aims to find maximal
contained rewritings of the initial query, in order to provide
the maximal number of answers. [11] present algorithms for
rewriting a query into a Datalog program, requiring recursive
Datalog even if the initial query is non-recursive. Subsequent
studies [4-7, 21, 22] proposed solutions for reducing the
number of accesses. Notions of minimal rewritings have been
proposed in [7, 8]. However, the goal remains the computation
of maximal results. The guessing accesses are not eliminated
nor do they have a special treatment since they relevant for
this goal. The same problem was studied for different query
languages: unions of conjunctive queries with negation [9],
with additional function dependencies [10], or with integrity
constraints [8]. The Magic Set algorithm [16] reduces the
number of sub-queries in a bottom-up evaluation.

Our own ANGIE system [12] also answers queries using
views as surrogates for Web services, and it imposes an upper
bound on the number of function calls. The strategy is to
prioritize function calls that are more likely to deliver answers.

None of these approaches can cope with situations where
the available functions have binding patterns that do not
allow answering the query. For example, if there is only one
function, getSongs®f (singer, song), and the user asks who
sang “Hallelujah”, then no query evaluation procedure, no
optimization strategy, and no smart orchestration mechanism
can deliver an answer to the query. This is because the function
cannot be called without a singer. This limitation applies to
all approaches listed above. What is needed in such cases are
the inverse functions that SUSIE provides.

DEEP WEB QUERYING. A Deep Web page is a form,
which requires certain values to be filled in, and which
delivers results for these values. Thus, guessing the right



Q Constants Just Functions YAGO [ YAGO| YAGO| YAGO
YAGO TD | ANGIE | SUSIE | #cla | #cFa +TD | +ANGIE | +SUSIE | #cla | #cFa
Q1 Nobel Prize in Literature 0 0 14 3| 55 103 103 103 103 0 0
Golden Pen Award 0 0 11 4| 16 0 0 0 11 4| 16
Franz Kafka Prize 0 0 5 4 8 0 0 0 5 4 8
American Book Medal 0 0 16 31 18 0 0 0 16 31 18
Jerusalem Prize 0 0 11 31 21 0 0 0 11 31 21
Q2 | France, Nobel Prize Literature 0 0 5 2 9 6 6 6 9 0 8
UK, Franz Kafka Prize 0 0 1 2 2 0 0 0 1 2 2
Q3 Nobel Prize Literature 0 0 198| 43| 100 234 35 453 457 0| 9%
Golden Pen Award 0 0 228| 18| 87 0 0 0 226 6| 99
Franz Kafka Prize 0 0 1321 19| 97 0 0 0 181 51 92
American Book Medal 0 0 296| 19| 97 0 0 0 522 3| 111
Jerusalem Prize 0 0 2200 22| 90 0 0 0 233 41 91
Q4 | France, Nobel Prize Literature 0 0 144| 11| 89 2 61 74 133 0| 107
UK, Franz Kafka Prize 0 0 79 3] 63 0 0 0 70 3] 6l
Q5 | Nobel Prize Literature 2004 0 0 1 2 2 0 0 0 1 2 2
Golden Pen Award 2006 0 0 1 2 2 0 0 0 1 2 2
Franz Kafka Prize 2006 0 0 1 2 2 0 0 0 1 2 2
American Book Medal 0 0 1 2 2 0 0 0 1 2 2
Jerusalem Prize 1981 0 0 1 2 2 0 0 0 1 2 2
Q6 | Nobel Prize in Literature 2004 0 0 31 31 51 0 0 0 31 31 51
Golden Pen Award 2006 0 0 57 31 52 0 0 0 64 31 51
Franz Kafka Prize 2006 0 0 61 31 59 0 0 0 89 21 59
American Book Medal 0 0 77 31 75 0 0 0 243 2| 85
Jerusalem Prize 1981 0 0 60 30 71 0 0 0 90 21 69
Q7 United States Of America 0 0 7 50 20 0 0 0 7 50 20
United Kingdom 0 0 7 31 26 0 0 0 7 31 26
Q8 United States Of America 0 0 309 5| 40 0 0 0 330 5| 40
United Kingdom 0 0 213 31 52 0 0 0 234 3| 66
Q9 | Academy Award Best Picture 0 0 85 2| 56 0 0 0 187 20 88
Q10| Academy Award Best Picture 0 0 79 20 16 0 0 0 212 20 9%
Q11 Grammy Awards 2009 0 0 110 69| 75 0 0 0 377 69| 75

Fig. 9. Number of answers for the queries of the templates in Figure 8

values for the forms has similarities to guessing the right
input values for Web services. Much work has addressed
the probing, semantic categorization, or materialization
of Deep Web forms. Google’s ‘“‘surfacing” technique [23]
aims to materialize the Deep Web by determining the most
promising input values for the forms. [24] aims to match
the schema of two Deep Web forms. This approach finds
instances for Deep Web attributes by querying the surface
Web, and then validating the instances through the original
Deep Web form. [25] estimates the domain and the size of
the domain of Deep Web attributes by systematic probing.
Other work [26, 27] has focused on probing form fields and
reconstructing the “schema” of a single form, so that queries
can place properly typed values into specific fields, avoiding
unnecessary requests.

These works differ in three aspects from our setting. First,
the approaches typically analyze the Deep Web form in an
off-line fashion, where all necessary information is available
before query time. This allows for approaches that use training
and learning. In our setting, in contrast, information has to
be extracted and integrated on the fly, because it depends
dynamically on the constants of the query. This restricts the
set of applicable methods to techniques that work at query
time. Second, work on the Deep Web typically aims to fill
unary relations (e.g., finding all reasonable values for the field
“author”). The population of unary relations can draw upon
a large pool of techniques (such as Hearst patterns [28]).
In our setting, in contrast, we have to find arguments for
binary relations (e.g., the “author of the book 'Don Quixote’
). Thus, the techniques from the Deep Web do not directly
transfer to our setting. Third, our setting requires the dynamic

composition of Web service functions in order to answer user
queries. The IE-based functions have to be integrated into
this orchestration and called on the fly. The above work on
the Deep Web does not address the prioritization of inverse
functions in execution plans.

INFORMATION  EXTRACTION. Information  extraction
(IE) is concerned with extracting structured data from
documents. IE methods suffer from the inherent imprecision
of the extraction process. Usually, the extracted data is way
too noisy to allow direct querying. SUSIE overcomes this
limitation, by using IE solely for finding candidate entities of
interest and feeding these as inputs into Web service calls.
Named Entity Recognition (NER) approaches [29-31] aim
to detect interesting entities in text documents. They can be
used to generate candidates for SUSIE. The first approach
discussed in this paper matches noun phrases against the
names of entities that are registered in a knowledge base —
a simple but effective technique that circumvents the noise
in learning-based NER techniques. The second IE approach
used in this paper is to extract structured data from Web
tables [18-20]. For SUSIE, we have developed judiciously
customized methods along these lines. These are not limited
to lists and tables, but detect arbitrary repetitive structures
that could contain candidates. Alternative IE methods such
as Wrapper Induction [32], fact extraction [33-35], or entity
extraction [31, 36] could be also considered, but they are not
practical in our scenario as they require training data and,
thus, human supervision.

SCHEMA AND ENTITY MATCHING. In this paper, we
assume that all Web services have been mapped to the same



schema. There is ample literature on the (semi-) automatic
creation of schema mappings [37]. Likewise, we are not
concerned with entity disambiguation and data fusion [38,
39]. Both tasks are required for SUSIE, but orthogonal to our
contribution on inverse functions and smart execution plans.

WEB SERVICE ORCHESTRATION. There is plenty of prior
work on Web service orchestration. The goal is to describe
complex business processes that are carried out using
Web service compositions. The standard for specifying such
workflows is BPEL [40]. A suite of papers addressed problems
ranging from verification issues [41] to optimization [42].
The works of [43—-46] devise an architecture for orchestration
of several sources. However, none of these works addresses
the issue of service asymmetry.

VIII. CONCLUSION

This paper has introduced the problem of asymmetric Web
services. We have shown that a considerable number of real-
world Web services allow asking for only one argument of
a relationship, but not for the other. We have proposed to
use information extraction to guess bindings for the input
variables and then validate these bindings by the Web service.
Through this approach, a whole new class of queries has
become tractable. We have shown that providing inverse
functions alone is not enough. They also have to be prioritized
accordingly. We have implemented our system, SUSIE, and
showed the validity of our approach on real data sets. We
believe that the beauty of our approach lies in the fruitful
symbiosis of information extraction and Web services, which
each mitigate the weaknesses of the other.

Our current implementation uses naive information
extraction algorithms that serve mainly as a proof of concept.
Future work will explore new algorithms that could step in.
We also aim to automize the discovery of new Web services
and their integration into the system.
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