
SeDas: A Self-Destructing Data System Based on Active Storage Framework
Lingfang Zeng , Shibin Chen , Qingsong Wei , and Dan Feng

Wuhan National Laboratory for Optoelectronics, School of Computers, Huazhong University of Science and Technology,
430074 China

Data Storage Institute, A*STAR, 138632 Singapore

Personal data stored in the Cloud may contain account numbers, passwords, notes, and other important information that could be
used andmisused by amiscreant, a competitor, or a court of law. These data are cached, copied, and archived by Cloud Service Providers
(CSPs), often without users’ authorization and control. Self-destructing data mainly aims at protecting the user data’s privacy. All the
data and their copies become destructed or unreadable after a user-specified time, without any user intervention. In addition, the decryp-
tion key is destructed after the user-specified time. In this paper, we present SeDas, a system that meets this challenge through a novel
integration of cryptographic techniques with active storage techniques based on T10 OSD standard. We implemented a proof-of-con-
cept SeDas prototype. Through functionality and security properties evaluations of the SeDas prototype, the results demonstrate that
SeDas is practical to use and meets all the privacy-preserving goals described. Compared to the system without self-destructing data
mechanism, throughput for uploading and downloading with the proposed SeDas acceptably decreases by less than 72%, while latency
for upload/download operations with self-destructing data mechanism increases by less than 60%.

Index Terms—Active storage, Cloud computing, data privacy, self-destructing data.

I. INTRODUCTION

W ITH development of Cloud computing and populariza-
tion of mobile Internet, Cloud services are becoming

more and more important for people’s life. People are more or
less requested to submit or post some personal private informa-
tion to the Cloud by the Internet. When people do this, they sub-
jectively hope service providers will provide security policy to
protect their data from leaking, so others people will not invade
their privacy.
As people rely more and more on the Internet and Cloud tech-

nology, security of their privacy takes more and more risks. On
the one hand, when data is being processed, transformed and
stored by the current computer system or network, systems or
network must cache, copy or archive it. These copies are es-
sential for systems and the network. However, people have no
knowledge about these copies and cannot control them, so these
copies may leak their privacy. On the other hand, their privacy
also can be leaked via Cloud Service Providers (CSPs’) negli-
gence, hackers’ intrusion or some legal actions. These problems
present formidable challenges to protect people’s privacy.
A pioneering study of Vanish [1] supplies a new idea for

sharing and protecting privacy. In the Vanish system, a secret
key is divided and stored in a P2P system with distributed hash
tables (DHTs). With joining and exiting of the P2P node, the
system can maintain secret keys. According to characteristics
of P2P, after about eight hours the DHT will refresh every node.
With Shamir Secret Sharing Algorithm [2], when one cannot get
enough parts of a key, he will not decrypt data encrypted with
this key, which means the key is destroyed.
Some special attacks to characteristics of P2P are challenges

of Vanish [3], [4], uncontrolled in how long the key can sur-

Manuscript received November 06, 2012; revised February 17, 2013; ac-
cepted February 17, 2013. Date of current versionMay 30, 2013. Corresponding
author: L. Zeng (e-mail: lfzeng@hust.edu.cn).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMAG.2013.2248138

vive is also one of the disadvantages for Vanish. In considering
these disadvantages, this paper presents a solution to implement
a self-destructing data system, or SeDas, which is based on an
active storage framework [5]–[10]. The SeDas system defines
two new modules, a self-destruct method object that is asso-
ciated with each secret key part and survival time parameter
for each secret key part. In this case, SeDas can meet the re-
quirements of self-destructing data with controllable survival
time while users can use this system as a general object storage
system. Our contributions are summarized as follows.
1) We focus on the related key distribution algorithm,
Shamir’s algorithm [2], which is used as the core algo-
rithm to implement client (users) distributing keys in the
object storage system. We use these methods to implement
a safety destruct with equal divided key (Shamir Secret
Shares [2]).

2) Based on active storage framework, we use an object-based
storage interface to store and manage the equally divided
key.We implemented a proof-of-concept SeDas prototype.

3) Through functionality and security properties evaluation
of the SeDas prototype, the results demonstrate that SeDas
is practical to use and meets all the privacy-preserving
goals. The prototype system imposes reasonably low run-
time overhead.

4) SeDas supports security erasing files and random encryp-
tion keys stored in a hard disk drive (HDD) or solid state
drive (SSD), respectively.

The rest of this paper is organized as follows. We review the
related work in Section II. We describe the architecture, design
and implementation of SeDas in Section III. The extensive eval-
uations are presented in Section IV, and we conclude this paper
in Section V.

II. RELATED WORK

A. Data Self-Destruct

The self-destructing data system in the Cloud environment
should meet the following requirements: i) How to destruct all

IEEE TRANSACTIONS ON MAGNETICS VOL : 49 NO : 6 YEAR : 2013

copies of the data simultaneously and make them unreadable
in case the data is out of control? A local data destruction ap-
proach will not work in the Cloud storage because the number
of backups or archives of the data that is stored in the Cloud
is unknown, and some nodes preserving the backup data have
been offline. The clear data should become permanently unread-
able because of the loss of encryption key, even if an attacker
can retroactively obtain a pristine copy of that data; ii) No ex-
plicit delete actions by the user, or any third-party storing that
data; iii) No need to modify any of the stored or archived copies
of that data; iv) No use of secure hardware but support to com-
pletely erase data in HDD and SSD, respectively.
Tang et al. [11] proposed FADE which is built upon stan-

dard cryptographic techniques and assuredly deletes files to
make them unrecoverable to anyone upon revocations of file
access policies. Wang et al. [12] utilized the public key based
homomorphism authenticator with random mask technique
to achieve a privacy-preserving public auditing system for
Cloud data storage security and uses the technique of a bilinear
aggregate signature to support handling of multiple auditing
tasks. Perlman et al. [13] present three types of assured delete:
expiration time known at file creation, on-demand deletion of
individual files, and custom keys for classes of data.
Vanish [1] is a system for creating messages that automat-

ically self-destruct after a period of time. It integrates crypto-
graphic techniques with global-scale, P2P, distributed hash ta-
bles (DHTs): DHTs discard data older than a certain age. The
key is permanently lost, and the encrypted data is permanently
unreadable after data expiration. Vanish works by encrypting
each message with a random key and storing shares of the key
in a large, public DHT. However, Sybil attacks [3] may compro-
mise the system by continuously crawling the DHT and saving
each stored value before it ages out and the total cost is two or-
ders of magnitude less than that mentioned in reference [14] es-
timated. They can efficiently recover keys for more than 99% of
Vanishmessages.Wolchok et al. [3] concludes that public DHTs
like VuzeDHT [15] probably cannot provide strong enough se-
curity for Vanish. So, Geambasu et al. [14] proposes two main
countermeasures.
Although using both OpenDHT [16] and VuzeDHT might

raise the bar for an attacker, at best it can provide the maximum
security derived from either system: if both DHTs are insecure,
then the hybrid will also be insecure. OpenDHT is controlled
by a single maintainer, who essentially functions as a trusted
third party in this arrangement. It is also susceptible to attacks
on roughly 200 PlanetLab [17] nodes on which it runs, most of
which are housed low-security research facilities. Vanish is an
interesting approach to an important privacy problem, but, in its
current form, it is insecure [3].
To address the problem of Vanish discussed above, in our pre-

vious work [4], we proposed a new scheme, called SafeVanish,
to prevent hopping attack, which is one kind of the Sybil attacks
[18], [19], by extending the length range of the key shares to in-
crease the attack cost substantially, and did some improvement
on the Shamir Secret Sharing algorithm [20] implemented in
the Vanish system. Also, we presented an improved approach
against sniffing attacks by way of using the public key cryp-
tosystem to prevent from sniffing operations.

However, the use of P2P features still is the fatal weakness
both for Vanish and SafeVanish, because there is a specific at-
tack against P2P methods (e.g., hopping attacks and Sybil at-
tacks [3]).
In addition, for the Vanish system, the survival time of key

attainment is determined by DHT system and not controllable
for the user. Based on active storage framework, this paper pro-
poses a distributed object-based storage system with self-de-
structing data function. Our system combines a proactive ap-
proach in the object storage techniques andmethod object, using
data processing capabilities of OSD to achieve data self-destruc-
tion. User can specify the key survival time of distribution key
and use the settings of expanded interface to export the life cycle
of a key, allowing the user to control the subjective life-cycle of
private data.

B. Object-Based Storage and Active Storage

Object-based storage (OBS) [21] uses an object-based
storage device (OSD) [22] as the underlying storage device.
The T10 OSD standard [22] is being developed by the Storage
Networking Industry Association (SNIA) and the INCITS T10
Technical Committee. Each OSD consists of a CPU, network
interface, ROM, RAM, and storage device (disk or RAID
subsystem) and exports a high-level data object abstraction on
the top of device block read/write interface.
With the emergence of object-based interface, storage devices

can take advantage of the expressive interface to achieve some
cooperation between application servers and storage devices. A
storage object can be a file consisting of a set of ordered log-
ical data blocks, or a database containing many files, or just a
single application record such as a database record of one trans-
action. Information about data is also stored as objects, which
can include the requirements of Quality of Service (QoS) [23],
security [24], caching, and backup. Kang et al. [25] even imple-
mented the object-based model enables storage class memories
(SCM) devices to overcome the disadvantages of the current
interfaces and provided new features such as object-level reli-
ability and compression. In recent years, many systems, such
as Lustre [26], Panasas [27] and Ceph [28], using object-based
technology have been developed and deployed. Since the data
can be processed in storage devices, people attempt to add more
functions into a storage device (e.g., OSD) and make it more
intelligent and refer to it as “Intelligent Storage” or “Active
Storage” [5]–[10]. For instance, IDISK [29] and SmAS Disk
[30] can offload application codes to disks, but the disks respond
to I/O requests of clients passively. A stream-based program-
ming model has been proposed for Active Disk [31]–[33], but
the stream is allowed to pass through only one disklet (user-spe-
cific code).
Today, the active storage system has become one of the most

important research branches in the domain of intelligent storage
systems. For instance, Wickremesinghe et al. [34] proposed a
model of load-managed active storage, which strives to integrate
computation with storage access in a way that the system can
predict the effects of offloading computation to Active Storage
Units (ASU). Hence, applications can be configured to match
hardware capabilities and load conditions.MVSS [35], a storage
system for active storage devices, provided a single framework

to support various services at the device level. MVSS separated
the deployment of services from file systems and thus allowed
services to be migrated to storage devices.
There have been several efforts to integrate active storage

technology into the T10 OSD standard. References [5], [7],
[8], and [10] all proposed their own implementation of active
storage framework for the T10 OSD standard. These imple-
mentations either are preliminary or validate their systems on a
variety of data intensive applications and fully demonstrate the
advantage of object-based technology. Our work extends prior
research (such as Qin et al.’s [5], John et al.’s [7], Devulapalli
et al.’s [8] and Xie et al.’s [10]) in this area by considering data
self-destruction.

C. Completely Erase Bits of Encryption Key

In SeDas, erasing files, which include bits (Shamir Secret
Shares [2]) of the encryption key, is not enough when we erase/
delete a file from their storage media; it is not really gone until
the areas of the disk it used are overwritten by new information.
With flash-based solid state drives (SSDs), the erased file situa-
tion is even more complex due to SSDs having a very different
internal architecture [36].
Several techniques that reliably delete data from hard disks

are available as built-in ATA or SCSI commands, software tools
(such as, DataWipe [37], HDDerase [38] SDelete [39]), and
government standards (e.g., [40]). These techniques provide ef-
fective means of sanitizing HDDs: either individual files they
store or the drive in their entirety. Software methods typically
involve overwriting all or part of the drive multiple times with
patterns specifically designed to obscure any remnant data. For
instance, different from erasing files which simply marks file
space as available for reuse, data wiping overwrites all data
space on a storage device, replacing useful data with garbage
data. Depending upon the method used, the overwrite data could
be zeros (also known as “zero-fill”) or could be various random
patterns [41]. The ATA and SCSI command sets include “secure
erase” commands that should sanitize an entire disk. Physical
destruction and degaussing are also effective.
SSDs work differently than platter-based HDDs, especially

when it comes to read and write processes on the drive. The
most effective way to securely delete platter-based HDDs (over-
writing space with data) becomes unusable on SSDs because
of their design. Data on platter-based hard disks can be deleted
by overwriting it. This ensures that the data is not recoverable
by data recovery tools. This method is not working on SSDs as
SSDs differ from HDDs in both the technology they use to store
data and the algorithms they use to manage and access that data.
Analog sanitization is more complex for SSDs than for hard

drives as well. The analysis in [36] suggests that verifying
analog sanitization in memories is challenging because there
are many mechanisms that can imprint remnant data on the
devices. Wei et al. [36] found that, for SSDs, built-in commands
are effective, but manufacturers sometimes implement them
incorrectly; overwriting the entire visible address space of an
SSD twice is usually, but not always, sufficient to sanitize the
drive; none of the existing hard drive-oriented techniques for
individual file sanitization are effective on SSDs.

Fig. 1. SeDas system architecture.

To the best of our knowledge, in most of the previous work
aimed at some special applications, e.g., database, multimedia,
etc., there is no general system level self-destructing data in the
literature. In order to substantiate our proposed SeDas, we have
implemented a fully functional prototype system. Based on this
prototype, we carry out a series of experiments to examine the
functions of SeDas. Extensive experiments show that the pro-
posed SeDas does not affect the normal use of storage system
and can meet the requirements of self-destructing data under a
survival time by user controllable key.

III. DESIGN AND IMPLEMENTATION OF SEDAS

A. SeDas Architecture

Fig. 1 shows the architecture of SeDas. There are three par-
ties based on the active storage framework. i)Metadata server
(MDS): MDS is responsible for user management, server man-
agement, session management and file metadata management.
ii) Application node: The application node is a client to use
storage service of the SeDas. iii) Storage node: Each storage
node is an OSD. It contains two core subsystems: key value
store subsystem and active storage object (ASO) runtime sub-
system. The key value store subsystem that is based on the
object storage component is used for managing objects stored
in storage node: lookup object, read/write object and so on. The
object ID is used as a key. The associated data and attribute are
stored as values.
The ASO runtime subsystem based on the active storage

agent module in the object-based storage system is used to
process active storage request from users and manage method
objects and policy objects.

B. Active Storage Object

An active storage object derives from a user object and has a
time-to-live (ttl) value property. The ttl value is used to trigger
the self-destruct operation. The tll value of a user object is infi-
nite so that a user object will not be deleted until a user deletes it

manually. The ttl value of an active storage object is limited so
an active object will be deleted when the value of the associated
policy object is true.
Interfaces extended by ActiveStorageObject class are used to

manage ttl value. The create member function needs another
argument for ttl. If the argument is 1, UserObject:: create
will be called to create a user object, else, ActiveStorageOb-
ject::create will call UserObject::create first and associate it
with the self-destruct method object and a self-destruct policy
object with the ttl value. The getTTL member function is based
on the read_attr function and returns the ttl value of the ac-
tive storage object. The setTTL, addTime and decTime member
function is based on the write_attr function and can be used to
modify the ttl value.

C. Self-Destruct Method Object

Generally, kernel code can be executed efficiently; however, a
service method should be implemented in user space with these
following considerations.
Many libraries such as libc can be used by code in user space

but not in kernel space. Mature tools can be used to develop
software in user space. It is much safer to debug code in user
space than in kernel space.
A service method needs a long time to process a complicated

task, so implementing code of a service method in user space
can take advantage of performance of the system. The system
might crash with an error in kernel code, but this will not happen
if the error occurs in code of user space.
A self-destruct method object is a service method. It needs

three arguments. The lun argument specifies the device, the pid
argument specifies the partition and the obj_id argument speci-
fies the object to be destructed.

D. Data Process

To use the SeDas system, user’s applications should imple-
ment logic of data process and act as a client node. There are
two different logics: uploading and downloading.
i) Uploading file process (see Fig. 2): When a user uploads
a file to a storage system and stores his key in this SeDas
system, he should specify the file, the key and ttl as ar-
guments for the uploading procedure. Fig. 3 presents its
pseudo-code. In these codes, we assume data and key has
been read from the file. The ENCRYPT procedure uses a
common encrypt algorithm or user-defined encrypt algo-
rithm. After uploading data to storage server, key shares
generated by ShamirSecretSharing algorithm will be used
to create active storage object (ASO) in storage node in
the SeDas system.

ii) Downloading file process: Any user who has relevant
permission can download data stored in the data storage
system. The data must be decrypted before use. The whole
logic is implemented in code of user’s application.

In the above code, we assume encrypted data and meta infor-
mation of the key has been read from the downloaded file. Be-
fore decrypting, client should try to get key shares from storage
nodes in the SeDas system. If the self-destruct operation has
not been triggered, the client can get enough key shares to re-
construct the key successfully. If the associated ASO of the key

Fig. 2. Uploading file process.

Fig. 3. Uploading file (pseudo-code).

has been destructed, the client cannot reconstruct the key so he
only read encrypted data.

E. Data Security Erasing in Disk

We must secure delete sensitive data and reduce the negative
impact of OSD performance due to deleting operation. The pro-
portion of required secure deletion of all the files is not great, so
if this part of the file update operation changes, then the OSD
performance will be impacted greatly.
Our implementation method is as follows: i) The system pre-

specifies a directory in a special area to store sensitive files. ii)
Monitor the file allocation table and acquire and maintain a list
of all sensitive documents, the logical block address (LBA). iii)
LBA list of sensitive documents appear to increase or decrease,
the update is sent to the OSD. iv) OSD internal synchronization
maintains the list of LBA, the LBA data in the list updates. For

Fig. 4. Structure of user application program realizing storage process.

example, for SSD, the old data page write 0, and then another
writes the new data page. When the LBA list is shorter than the
corresponding file, size is shrinking. At this time, the old data
needs to correspond to the page all write. v) For ordinary LBA,
the system uses the regular update method. vi) By calling ordi-
nary data erasure API, we can safely delete sensitive files of the
specified directory.
Our strategy only changes a few sensitive documents to the

update operation, no effect on the operational performance of
the ordinary file. In general, the secure delete function is implied
while the OSD read and write performance can be negligible.

IV. EVALUATION AND DISCUSSION

In this section, we discuss test method and implementation
for SeDas and then give analysis on the test result. We put up a
data storage file system based on pNFS in virtual machine envi-
ronment to implement the test for file uploading, downloading
and sharing.

A. Experimental Setup and Methodology

There are multiple storage services for a user to store data.
Meanwhile, to avoid the problem produced by the centralized
“trusted” third party, the responsibility of SeDas is to protect
the user key and provide the function of self-destructing data.
Fig. 4 shows the brief structure of the user application program
realizing storage process. In this structure, the user application
node contains two system clients: any third-party data storage
system (TPDSS) and SeDas. The user application program in-
teracts with the SeDas server through SeDas’ client, getting data
storage service.
The way to attain storage service by client interacting with a

server depends on the design of TPDSS. We do not need a sec-
ondary development for different TPDSS. The process to store
data has no change, but encryption is needed before uploading
data and the decryption is needed after downloading data. In
the process of encryption and decryption, the user application
program interacts with SeDas. To test the implementation of
SeDas described in the previous section, we use pNFS to put up
a TPDSS to implement data storage service. The client mainly
runs in kernel mode, and we can mount a remote file system
to local. A VMware virtual environment is built up to test. The
configuration of host and virtual node are as shown in Fig. 5.
To avoid creating virtual machines repeatedly, we make the

same configuration on every node. From a performance point of
view, some adjustments may be needed, such as improving CPU
configuration of metadata sever, increasing the size of the disk
and memory for storage nodes. VMware version is VMware
Workstation 7:1:3 build-324285.

Fig. 5. Configuration of host and virtual node.

Fig. 6. Comparisons of latency in the upload and download operations.

B. Evaluation

The evaluation platform built up on pNFS supports simple
file management, which includes some data process functions
such as file uploading, downloading and sharing.
1) Functional Testing: We input the full path of file, key

file, and the life time for key parts. The system encrypts data
and uploads encrypted data. The life time of key parts is 150 s
for a sample text file with 101 bytes. System prompts creating
active object are successful afterwards and that means the up-
loading file gets completed. The time output finally is the time
to create active object. SeDas was checked and corresponded
with changes on work directory of the storage node. The sample
text file also was downloaded or shared successfully before key
destruct.
2) Performance Evaluation: As mentioned, the difference

of I/O process between SeDas and Native system (e.g. pNFS) is
the additional encryption/decryption process which needs sup-
port from the computation resource of SeDas’ client. We com-
pare two systems: i) a self-destructing data system based on ac-
tive storage framework (SeDas for short), and ii) a conventional
system without self-destructing data function (Native for short).
We evaluated the latency of upload and download with two

schemes (SeDas and Native) under different file sizes. Also, we
evaluated the overhead of encryption and decryption with two
schemes under different file sizes. Fig. 6 shows the latency of the

Fig. 7. Comparisons of overhead for encryption and decryption.

Fig. 8. Comparisons of throughput in the upload and download operations.

different schemes. We observe that SeDas increases the average
latency of the Native system by 59.06% and 25.69% for the
upload and download, respectively. The reason for this perfor-
mance degradation is the encryption and decryption processes
introduce the overhead. To illustrate the encryption/decryption
latency, Fig. 7 plots the overhead of both encryption and decryp-
tion processes under different file sizes in SeDas.
Fig. 8 shows the throughput results for the different schemes.

The throughput decreases because upload/download processes
require much more CPU computation and finishing encryption/
decryption processes in the SeDas system, compared with the
Native system. From Fig. 8(a), we can see that SeDas reduces
the throughput over the Native system by an average of 59.5%
and up to 71.67% for the uploading. From Fig. 8(b), we can see
that SeDas reduces the throughput over the Native system by an
average of 30.5% and up to 50.75% for the downloading.

In summary, the introduced overhead is small: compared
with the Native system without self-destructing data mech-
anism, throughput for uploading and downloading with the
proposed SeDas acceptably decreases by less than 72%, while
latency for upload/download operations with self-destructing
data mechanism increases by less than 60%.

V. CONCLUSION

Data privacy has become increasingly important in the Cloud
environment. This paper introduced a new approach for pro-
tecting data privacy from attackers who retroactively obtain,
through legal or other means, a user’s stored data and private
decryption keys. A novel aspect of our approach is the lever-
aging of the essential properties of active storage framework
based on T10 OSD standard. We demonstrated the feasibility of
our approach by presenting SeDas, a proof-of-concept prototype
based on object-based storage techniques. SeDas causes sensi-
tive information, such as account numbers, passwords and notes
to irreversibly self-destruct, without any action on the user’s
part. Our measurement and experimental security analysis sheds
insight into the practicability of our approach. Our plan to re-
lease the current SeDas system will help to provide researchers
with further valuable experience to inform future object-based
storage system designs for Cloud services.

ACKNOWLEDGMENT

This work was supported in part by the National 973 Program
of China under Grant 2011CB302301, by China National Funds
for Distinguished Young Scientists under Grant 61025008, and
byA-STAR, Singapore, under Grant 112-172-0010. The authors
are grateful to the anonymous reviewers for their valuable com-
ments that helped in improving the paper.

REFERENCES

[1] R. Geambasu, T. Kohno, A. Levy, and H.M. Levy, “Vanish: Increasing
data privacy with self-destructing data,” in Proc. USENIX Security
Symp., Montreal, Canada, Aug. 2009, pp. 299–315.

[2] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[3] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J. A. Hal-
derman, C. J. Rossbach, B. Waters, and E. Witchel, “Defeating vanish
with low-cost sybil attacks against large DHEs,” in Proc. Network and
Distributed System Security Symp., 2010.

[4] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved data
self-destruction for protecting data privacy,” in Proc. Second Int. Conf.
Cloud Computing Technology and Science (CloudCom), Indianapolis,
IN, USA, Dec. 2010, pp. 521–528.

[5] L. Qin and D. Feng, “Active storage framework for object-based
storage device,” in Proc. IEEE 20th Int. Conf. Advanced Information
Networking and Applications (AINA), 2006.

[6] Y. Zhang and D. Feng, “An active storage system for high perfor-
mance computing,” in Proc. 22nd Int. Conf. Advanced Information
Networking and Applications (AINA), 2008, pp. 644–651.

[7] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage using
object-based devices,” in Proc. IEEE Int. Conf. Cluster Computing,
2008, pp. 472–478.

[8] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff, 2009,
Design of an intelligent object-based storage device [Online].
Available: http://www.osc.edu/research/network_file/projects/ob-
ject/papers/istor-tr.pdf

[9] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz,
W.-K. Liao, and A. Choudhary, “Enabling active storage on parallel
I/O software stacks,” in Proc. IEEE 26th Symp. Mass Storage Systems
and Technologies (MSST), 2010.

[10] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y. Kang,
Z. Niu, and Z. Tan, “Design and evaluation of oasis: An active storage
framework based on t10 osd standard,” in Proc. 27th IEEE Symp. Mas-
sive Storage Systems and Technologies (MSST), 2011.

[11] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “FADE: Se-
cure overlay cloud storage with file assured deletion,” in Proc.
SecureComm, 2010.

[12] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for storage security in cloud computing,” in Proc. IEEE IN-
FOCOM, 2010.

[13] R. Perlman, “File system design with assured delete,” in Proc. Third
IEEE Int. Security Storage Workshop (SISW), 2005.

[14] R. Geambasu, J. Falkner, P. Gardner, T. Kohno, A. Krishnamurthy,
and H. M. Levy, Experiences building security applications on DHTs
UW-CSE-09-09-01, 2009, Tech. Rep..

[15] Azureus, 2010 [Online]. Available: http://www.vuze.com/
[16] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.

Shenker, I. Stoica, and H. Yu, “OpenDHT: A public DHT service and
its uses,” in Proc. ACM SIGCOMM, 2005.

[17] [Online]. Available: http://www.planet-lab.org/
[18] J. R. Douceur, “The sybil attack,” in Proc. IPTPS ’01: Revised Papers

From the First Int. Workshop on Peer-to-Peer Systems, 2002.
[19] T. Cholez, I. Chrisment, and O. Festor, “Evaluation of sybil attack pro-

tection schemes in kad,” in Proc. 3rd Int. Conf. Autonomous Infrastruc-
ture, Management and Security, Berlin, Germany, 2009, pp. 70–82.

[20] B. Poettering, 2006, SSSS: Shamir’s Secret Sharing Scheme [Online].
Available: http://point-at-infinity.org/ssss/

[21] M. Mesnier, G. Ganger, and E. Riedel, “Object-based storage,” IEEE
Commun. Mag., vol. 41, no. 8, pp. 84–90, Aug. 2003.

[22] R. Weber, “Information Technology—SCSI object-based storage de-
vice commands (OSD)-2,” Technical Committee T10, INCITS Std.,
Rev. 5 Jan. 2009.

[23] Y.Lu,D.Du, andT.Ruwart, “QoSprovisioning framework for anOSD-
based storage system,” in Proc. 22nd IEEE/13th NASA Goddard Conf.
Mass Storage Systems and Technologies (MSST), 2005, pp. 28–35.

[24] Z. Niu, K. Zhou, D. Feng, H. Chai, W. Xiao, and C. Li, “Implementing
and evaluating security controls for an object-based storage system,”
in Proc. 24th IEEE Conf. Mass Storage Systems and Technologies
(MSST), 2007.

[25] Y. Kang, J. Yang, and E. L. Miller, “Object-based SCM: An efficient
interface for storage class memories,” in Proc. 27th IEEE Symp. Mas-
sive Storage Systems and Technologies (MSST), 2011.

[26] [Online]. Available: http://www.lustre.org/

[27] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou, “Scalable performance of the panasas parallel
file system,” in Proc. 6th USENIX Conf. File and Storage Technologies
(FAST), 2008.

[28] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.
7th Symp. Operating Systems Design and Implementation (OSDI),
2006.

[29] K. Keeton, D. A. Patterson, and J. Hellerstein, “A case for intelligent
disks (IDISKs),” SIGMOD Rec., vol. 27, no. 3, Sep. .

[30] V. Dimakopoulos, A. Kinalis, S.Mastrogiannakis, and E. Pitoura, “The
smart autonomous atorage (SMAS) system,” in Proc. IEEE Pacific Rim
Conf. Communications, Computers and Signal Processing, 2001, pp.
303–306.

[31] E. Riedel, C. Faloutsos, G. Gibson, and D. Nagle, “Active disks for
large scale data processing,” IEEE Computer, vol. 34, no. 6, pp. 68–74,
Jun. 2001.

[32] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming
model, algorithms and evaluation,” in Proc. 8th Conf. Architectural
Support for Programming Languages and Operating System (AS-
PLOS), Oct. 1998, pp. 81–91.

[33] G. Chockler and D. Malkhi, “Active disk paxos with infinitely many
processes,” in Proc. 21st Annu. Symp. Principles of Distributed Com-
puting, 2002, pp. 78–87.

[34] R. Wickremesinghe, J. Chase, and J. Vitter, “Distributed computing
with load-managed active storage,” in Proc. 11th IEEE Int. Symp. High
Performance Distributed Computing (HPDC), 2002, pp. 13–23.

[35] X. Ma and A. Reddy, “MVSS: An active storage architecture,” IEEE
Trans. Parallel Distributed Syst., vol. 14, no. 10, pp. 993–1003, Oct.
2003.

[36] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably erasing
data from flash-based solid state drives,” in Proc. 9th USENIX Conf.
File and Storage Technologies (FAST), San Jose, CA, USA, Feb. 2011.

[37] Roadkil’s Datawipe [Online]. Available: http://www.roadkil.net/
[38] Secure Erase [Online]. Available: http://cmrr.ucsd.edu/people/Hughes/

SecureErase.shtml
[39] Technet Sysinternal’s Sdelete [Online]. Available: http://technet.mi-

crosoft.com
[40] [Online]. Available: http://www.dataerasure.com/recognized_over-

writing_standards.htm
[41] J. L. Sloan, June 2011, Data Remanence and Solid State Drives

[Online]. Available: http://coverclock.blogspot.com/2011/06/data-re-
manence-and-solid-state-disks.html

