
2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 1

A secure data self-destructing scheme in cloud
computing

Jinbo Xiong, Student Member, IEEE, Ximeng Liu, Student Member, IEEE,
Zhiqiang Yao, Jianfeng Ma, Qi Li, Kui Geng, and Patrick S. Chen

Abstract—With the rapid development of versatile cloud services, it becomes increasingly susceptible to use cloud
services to share data in a friend circle in the cloud computing environment. Since it is not feasible to implement
full lifecycle privacy security, access control becomes a challenging task, especially when we share sensitive data on
cloud servers. In order to tackle this problem, we propose a key-policy attribute-based encryption with time-specified
attributes (KP-TSABE), a novel secure data self-destructing scheme in cloud computing. In the KP-TSABE scheme,
every ciphertext is labeled with a time interval while private key is associated with a time instant. The ciphertext can
only be decrypted if both the time instant is in the allowed time interval and the attributes associated with the ciphertext
satisfy the key’s access structure. The KP-TSABE is able to solve some important security problems by supporting user-
defined authorization period and by providing fine-grained access control during the period. The sensitive data will be
securely self-destructed after a user-specified expiration time. The KP-TSABE scheme is proved to be secure under the
decision l-bilinear Diffie-Hellman inversion (l-Expanded BDHI) assumption. Comprehensive comparisons of the security
properties indicate that the KP-TSABE scheme proposed by us satisfies the security requirements and is superior to
other existing schemes.

Index Terms—Sensitive data, secure self-destructing, fine-grained access control, privacy-preserving, cloud computing

F

1 INTRODUCTION

C LOUD computing is considered as the next
step in the evolution of on-demand informa-

tion technology which combines a set of existing
and new techniques from research areas such as
service-oriented architectures (SOA) and virtualiza-
tion. With the rapid development of versatile cloud
computing technology and services, it is routine for
users to leverage cloud storage services to share data
with others in a friend circle, e.g., Dropbox, Google

• J. Xiong and Z. Yao (corresponding author) are with the Faculty
of Software, Fujian Normal University, Fuzhou, 350108, China.
E-mail: jbxiongfj@gmail.com; yzq@fjnu.edu.cn.

• X. Liu and K. Geng are with the School of Telecommunications
Engineering, Xidian University, Xi’an, 710071, China.
E-mail: snbnix@gmail.com; gengkui@139.com.

• J. Ma and Q. Li are with the School of Computer Science and
Technology, Xidian University, Xi’an, 710071, China.
E-mail: jfma@mail.xidian.edu.cn, qilijs@gmail.com.

• P. Chen is with the Department of Information Management,
Tatung University, 40, Sect.3, Zhongshan N. Road, 104 Taipei,
Taiwan.
E-mail: chenps@ttu.edu.tw.

Manuscript received Jan. 14, 2014; revised xxx, 2014.

Drive and AliCloud [1].
The shared data in cloud servers, however, usually

contains users’ sensitive information (e.g., personal
profile, financial data, health records, etc.) and needs
to be well protected [2]. As the ownership of the
data is separated from the administration of them
[3], the cloud servers may migrate users’ data to
other cloud servers in outsourcing or share them
in cloud searching [4]. Therefore, it becomes a big
challenge to protect the privacy of those shared
data in cloud, especially in cross-cloud and big data
environment [5]. In order to meet this challenge,
it is necessary to design a comprehensive solution
to support user-defined authorization period and
to provide fine-grained access control during this
period. The shared data should be self-destroyed
after the user-defined expiration time.

One of the methods to alleviate the problems is
to store data as a common encrypted form. The
disadvantage of encrypting data is that the user
cannot share his/her encrypted data at a fine-grained
level. When a data owner wants to share someone
his/her information, the owner must know exactly

IEEE TRANSACTIONS ON CLOUD COMPUTING VOL:PP NO:99 YEAR 2014

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 2

the one he/she wants to share with [6]. In many
applications, the data owner wants to share infor-
mation with several users according to the security
policy based on the users’ credentials. Attribute-
based encryption (ABE) has significant advantages
based on the tradition public key encryption instead
of one-to-one encryption because it achieves flexible
one-to-many encryption [7]. ABE scheme provides
a powerful method to achieve both data security and
fine-grained access control. In the key-policy ABE
(KP-ABE) scheme to be elaborated in this paper,
the ciphertext is labeled with set of descriptive
attributes. Only when the set of descriptive attributes
satisfies the access structure in the key, the user can
get the plaintext [8].

In general, the owner has the right to specify that
certain sensitive information is only valid for a lim-
ited period of time, or should not be released before
a particular time. Timed-release encryption (TRE)
provides an interesting encryption service where
an encryption key is associated with a predefined
release time, and a receiver can only construct the
corresponding decryption key in this time instance
[9]. On this basis, Paterson et al. proposed a time-
specific encryption (TSE) [10] scheme, which is
able to specify a suitable time interval such that
the ciphertext can only be decrypted in this interval
(decryption time interval, DTI). It can be used in
many applications, e.g., Internet programming con-
test, electronic sealed-bid auction, etc. Electronic
sealed-bid auction is a method to establish the price
of goods through the Internet while keeping the bids
secret during the bidding phase. That is, the bids
(ciphertext) should be kept secret during the bidding
phase (a specific time interval).

However, applying the ABE to the shared data
will introduce several problems with regard to time-
specific constraint and self-destruction, while apply-
ing the TSE will introduce problems with regard
to fine-grained access control. Thus, in this paper,
we attempt to solve these problems by using KP-
ABE and adding a constraint of time interval to each
attribute in the set of decryption attributes.

1.1 Related Works
1.1.1 Attribute-based encryption
Attribute-based encryption is one of the important
applications of fuzzy identity-based encryption [7].
ABE comes in two flavors called KP-ABE [8][11]

and ciphertext-policy ABE (CP-ABE) [12][13]. In
CP-ABE, the ciphertext is associated with the access
structure while the private key contains a set of
attributes. Bethencourt et al. proposed the first CP-
ABE scheme [12], the drawback of their scheme
is that security proof was only constructed under
the generic group model. To address this weakness,
Cheung et al. presented another construction under
a standard model [13]. Waters used a linear secret
sharing scheme (LSSS) matrix as a general set of
access structures over the attributes and proposed
an efficient and provably secure CP-ABE scheme
under the standard model [14].

In KP-ABE, the idea is reversed: the ciphertext
contains a set of attributes and the private key is
related to the access structure. The first construction
of KP-ABE scheme was proposed in [8]. In their
scheme, when a user made a secret request, the
trusted authority determined which combination of
attributes must appear in the ciphertext for the user
to decrypt. Instead of using the Shamir secret key
technique [15] in the private key, this scheme used a
more generalized form of secret sharing to enforce
a monotonic access tree. Ostrovsky et al. presented
the first KP-ABE system which supports the non-
monotone formulas in key policies [16]. Yu et al.
used a combining technique of KP-ABE, proxy re-
encryption, and lazy re-encryption which allows the
data owner to delegate most of the computation
tasks involved in fine-grained data access control
to untrusted cloud servers without disclosing the un-
derlying data contents [17]. Tysowski et al. modified
the ABE and leveraged re-encryption algorithm to
propose a novel scheme to protect mobile user’s data
in cloud computing environment [18]. Due to the
lack of time constraints, the above-mentioned ABE
schemes do not support user-defined authorization
period and secure self-destruction after expiration
for privacy-preserving of the data lifecycle in cloud
computing.

1.1.2 Secure self-destruction scheme
A well-known method for addressing this problem
is secure deletion of sensitive data after expiration
when the data was used [19]. Recently, Cachin et al.
employed a policy graph to describe the relationship
between attributes and the protection class and pro-
posed a policy-based secure data deletion scheme
[20]. Reardon et al. leveraged the graph theory, B-
tree structure and key wrapping and proposed a

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 3

novel approach to the design and analysis of secure
deletion for persistent storage devices [21]. Because
of the properties of physical storage media, the
above-mentioned methods are not suitable for the
cloud computing environment as the deleted data
can be recovered easily in the cloud servers [22].

A data self-destructing scheme, first proposed by
Geambasu et al. [23], is a promising approach which
designs a Vanish system enables users to control
over the lifecycle of the sensitive data. Wang et al.
improved the Vanish system and proposed a secure
self-destructing scheme for electronic data (SSDD)
[24]. In the SSDD scheme, a data is encrypted into
a ciphertext, which is then associated and extracted
to make it incomplete to resist against the traditional
cryptanalysis and the brute-force attack. Then, both
the decryption key and the extracted ciphertext are
distributed into a distributed hash table (DHT) net-
work to implement self-destruction after the update
period of the DHT network. However, Wolchok et
al. made a lot of experiments and confirmed that
the Vanish system is vulnerable to Sybil attacks by
using the Vuze DHT network [25]. So the security
of the SSDD scheme is also questionable.

To address this problem, Zeng et al. proposed a
SeDas system, which is a novel integration of cryp-
tographic techniques with active storage techniques
[26]. Xiong et al. leveraged the DHT network and
identity-based encryption (IBE) [27] and proposed
an IBE-based secure self-destruction (ISS) scheme
[22]. In order to protect the confidentiality and
privacy security of the composite documents within
the whole lifecycle in cloud computing, Xiong et
al. applied the ABE algorithm to propose a secure
self-destruction scheme for composite documents
(SelfDoc) [28][29]. Recently, Xiong et al. employed
identity-based timed-release encryption (ID-TRE)
algorithm [9] and the DHT network and proposed a
full lifecycle privacy protection scheme for sensitive
data (FullPP), which is able to provide full lifecy-
cle privacy protection for users’ sensitive data by
making it unreadable before a predefined time and
automatically destructed after expiration [3]. The
main idea of the above-mentioned schemes is that
they respectively combine different cryptographic
techniques with the DHT network to provide fine-
grained data access control during the lifecycle
of the protected data and to implement data self-
destruction after expiration. However, using of the
DHT network will result in the fact that the lifecycle

of the protected data is limited by the update periods
of the nodes in the network. How to implement user-
defined data lifecycle is a worth exploring problem.

1.1.3 Time-specific encryption
The time-specific encryption scheme TSE, proposed
by Peterson et al. [10], was introduced as an
extension of TRE [9]. In TRE, a protected data
can be encrypted in such a way that it cannot be
decrypted (even by a legitimate receiver who owns
the decryption key for the ciphertext) until the time
(called the release-time) that was specified by the
encryptor. Most of the previous TRE schemes that
adopt a time-sever model are in fact public-key TRE
schemes. They do not consider the sensitive data
privacy after expiration [30][31][32].

In the TSE scheme, a time sever broadcasts a
time instant key (TIK), a data owner encrypts a
message into a ciphertext during a time interval,
and a receiver can decrypt the ciphertext if the
TIK is valid in that interval. Kasamatsu designed
an efficient TSE scheme by using forward-secure
encryption (FSE) in which the size of the ciphertext
is greatly small than that generated by the previous
schemes [33]. The time interval may be considered
as the authorization period of the protected data,
and TSE schemes are able to meet this requirement.
However, it is a tricky problem when the traditional
TSE is used in the cloud computing environment:
cloud computing environment needs a fine-grained
access control [17], which cannot be provided by
the traditional TSE schemes. How to achieve the
time-specified ciphertext into a fine-grained access
control level is a problem to be explored.

1.2 Motivation
As the-state-of-the-art of the secure self-destruction
scheme, both SSDD and FullPP have some limita-
tions. First, SSDD does not consider the issue of
the desired release time of the sensitive data, the
expiration time of both SSDD and FullPP schemes
is limited by the DHT network and cannot be deter-
mined by the user. Second, SSDD and many other
schemes are dependent on the ideal assumption
of “No attacks on VDO (vanishing data object)
before it expires” [23]. Third, it is demonstrated
that the Vanish scheme [23] is vulnerable to the
Sybil attacks from the DHT network, the SSDD
scheme and other schemes are similar. As a result,

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 4

unauthorized users can freely access to the sensitive
data and this flaw would lead to a serious privacy
disclosure [25].

To address these problems, in this paper, we
propose a novel solution called key-policy attribute
based encryption with time-specified attributes (KP-
TSABE) scheme, which is based on our observa-
tion that, in practical cloud application scenarios,
each data item can be associated with a set of
attributes and every attribute is associated with a
specification of time interval (decryption attribute
time interval, DATI), e.g., [09:00,17:00], denoting
that the encrypted data item can only be decrypted
between 09:00 to 17:00 on a specified date and it
will not be recoverable before 09:00 and after 17:00
that day. The data owner encrypts his/her data to
share with users in the system, in which every users
key is associated with an access tree and each leaf
node is associated with a time instant, e.g., 14:30.
The access tree of each user can be defined as a
unique logical expression over these DATI attributes
to reflect the data item authorized to the user. In
order to decrypt the ciphertext successfully, the valid
attributes should satisfy the access tree where the
time instant of each leaf in the users key should
belong to the DATI (e.g.,14:30∈[09:00,17:00]) in
the corresponding attribute in the ciphertext. As the
logical expression of the access tree can represent
any desired data set with any time interval, it
can achieve fine-grained access control. If the time
instant is not in the specified time interval, the
ciphertext cannot be decrypted, i.e., this ciphertext
will be self-destructed and no one can decrypt it be-
cause of the expiration of the secure key. Therefore,
secure data self-destruction with fine-grained access
control is achieved.

1.3 Contributions
In this paper, we propose a KP-TSABE scheme,
which is a novel secure self-destructing scheme for
data sharing in cloud computing. We first introduce
the notion of KP-TSABE, formalize the model
of KP-TSABE and give the security model of it.
Then, we give a specific construction method about
the scheme. Finally, we prove that the KP-TSABE
scheme is secure.

Especially, KP-TSABE has the following advan-
tages with regard to security and fine-grained access
control compared to other secure self-destructing
schemes.

1⃝ KP-TSABE supports the function of user-
defined authorization period and ensures that the
sensitive data cannot be read both before its desired
release time and after its expiration.

2⃝ KP-TSABE does not require the ideal assump-
tion of “No attacks on VDO before it expires”.

3⃝ KP-TSABE is able to implement fine-grained
access control during the authorization period and
to make the sensitive data self-destruction after
expiration without any human intervention.

4⃝ KP-TSABE is proven to be secure under
the standard model by using the l-bilinear Diffie-
Hellman inversion assumption.

Organization. The rest of this paper is organized
as follows: Section 2 describes the preliminaries,
and the concepts, system model, formal model and
security model of the KP-TSABE scheme are pre-
sented in Section 3. We construct the KP-TSABE
scheme in Section 4. Security proof, comparison
and analysis are presented in Section 5 and Section
6 respectively. Finally, we concluded this paper in
section 7.

2 PRELIMINARIES

In this section, some preliminaries related to bilinear
maps, complexity assumptions and access structure
are presented.

2.1 Bilinear Maps
Let G and G′ be two multiplicative cyclic groups
with big prime order p. Let g be a generator of G.
Let e be a bilinear map e : G × G → G′ with the
following properties [34]:

1) Bilinearity: For all u, v ∈ G and a, b ∈ Zp ,
the equation e(ua, vb) = e(u, v)ab holds.

2) Non-degeneracy: e(g, g) ̸= 1.
3) Computability: There exists an efficient algo-

rithm to compute bilinear map e : G × G →
G′.

2.2 Bilinear Diffie-Hellman Inversion (BDHI)
Assumption
In order to prove the security of the KP-TSABE
scheme, we introduce l-BDHI assumption used in
[34]. The l-BDHI problem in G is as follows: Given
g, h and gy

i in G for i = 1, 2, · · · , l as input for
some unknown random y ∈ Z∗

p, output W ∈ G′

to decide whether W = e(g, h)y
l+1 . We say that

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 5

a polynomial-time adversary A has advantage ϵ in
solving the decisional l-BDHI problem (G,G′) if:

|Pr[A(g, h,y, e(g, h)y
l+1

) = 0]−
Pr[A(g, h,y, e(g, h)z) = 0]| ≥ ϵ

where the probability is taken over random y, z and
the random bits consumed by A.

Definition 1. We say that the (t, ϵ)-l-BDHI assump-
tion holds in (G,G′) if no t-time algorithm has the
probability at least ϵ in solving the l-BDHI problem
for non-negligible ϵ.

2.3 Access structure and access tree
2.3.1 Access structure
Definition 2 (Access structure [35]). Let
{P1, P2, · · · , Pn} be a set of parties. A collection
A ⊆ 2{P1,··· ,Pn} is monotone if ∀B,C: if B ∈ A
and B ⊆ C then C ∈ A. An access structure
(respectively, monotonic access structure) is a
collection (respectively, monotone collection) A
of non-empty subsets of {P1, P2 · · · , Pn}, i.e.,
A ⊆ 2{P1,··· ,Pn}\{∅}. The sets in A are called the
authorized sets, and the sets not in A are called
the unauthorized sets.

2.3.2 Access tree with time-specific attributes
We denote Υ as an access tree. Each non-leaf node
of the tree represents a threshold gate, described
by a threshold value and its children [8]. If numx

is the number of children of a node x and kx is
its threshold value, then 0 < kx < numx holds.
The threshold gate is an OR gate when threshold
value kx = 1. If threshold value of node x satisfied
kx = numx, it is an AND gate [34]. Each leaf node
x of the tree is associated with a time instant tx. If
the tx belongs to a time interval [tL,x, tR,x], which
is associated with the corresponding attribute x in
the ciphertext, we let value kx = 1.

Some functions are defined in order to facilitate
dealing with Υ. In Υ, the function parent(x) is rep-
resented as the parent of the node x. The component
of attributes is associated with the leaf node x in Υ.
Υ also defines an ordering between the children of
a node which are numbered from 1 to num. The
function index(x) returns such a number associated
with the node x, where the index values are uniquely
allocated to nodes in Υ for a given key [34].

In the following we will describe how to satisfy
an access tree with attributes and time constraints.

Let Γ be a Υ with root r. Γx is represented as
the subtree of Γ with the root node at x. For the
root r of Γ, we denote Γr. If a set of attributes
S satisfies Γx, we denote it as Γx(S) = 1. Γx(S)
is calculated recursively as follows: If x is a non-
leaf node, evaluate Γx′(S) for all children x′ of the
node x. Γx(S) returns 1 if and only if at least kx
children return 1. If x is a node belongs to the last
layer from bottom, then Γx(S) returns 1 if and only
if the current time instant tx associated with leaf
node (attribute) in the access tree belongs to time
interval [tL,x, tR,x] associated with the corresponding
attribute x in the ciphertext, that is tx ∈ [tL,x, tR,x].

3 CONCEPTS AND MODELS

In this section, some concepts are first described,
and then the system model, formal model and secu-
rity model of the KP-TSABE scheme are presented.

3.1 Concepts

To form a basis for the KP-TSABE scheme, we
introduce the following concepts [3].

(1) Authorization period. It is a time interval
predefined by a data owner starting from the desired
release time and ending at the expiration time. The
ciphertext is associated with this interval; the user
can construct the decryption key only when the time
instant is within this interval.

(2) Expiration time. It is a threshold time instant
predefined by the owner. The shared data can only
be accessed by the user before this time instant,
because the shared data will be self-destructed after
expiration.

(3) Full lifecycle. It is a time interval from the
creation of the shared data, authorization period to
expiration time. This paper provides full lifecycle
privacy protection for shared data in cloud comput-
ing.

3.2 System model of KP-TSABE

In our system, we mainly focus on how to achieve
fine-grained access control during the authorization
period of the shared data in cloud and how to imple-
ment self-destruction after expiration. Specifically,
we define the system model by dividing the KP-
TSABE scheme into the following six entities as
shown in Fig.1.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 6

CT

Data Users

Cloud Servers Potential AdversaryData Owner

Authority Time Server

Fig. 1. System model of the KP-TSABE scheme

(1) Data Owner. Data owner can provide data or
files that contain some sensitive information, which
are used for sharing with his/her friends (data users).
All these shared data are outsourced to the cloud
servers to store.

(2) Authority. It is an indispensable entity which
is responsible for generating, distributing and man-
aging all the private keys, and is trusted by all the
other entities involved in the system.

(3) Time Server. It is a time reference server
without any interaction with other entities involved
in the system. It is responsible for a precise release
time specification.

(4) Data Users. Data users are some peoples who
passed the identity authentication and access to the
data outsourced by the data owner. Notice that, the
shared data can only be accessed by the authorized
users during its authorization period.

(5) Cloud Servers. It contains almost unlimited
storage space which is able to store and manage
all the data or files in the system. Other entities
with limited storage space can store their data to
the cloud servers.

(6) Potential Adversary. It is a polynomial time
adversary and described in the security model of the
KP-TSABE scheme in section 3.4.

3.3 Formal Model of KP-TSABE

The KP-TSABE scheme can be described as a
collection of the following four algorithms: Setup,
Encrypt, KeyGen, and Decrypt.

Setup(1κ,U): This algorithm is run by the Au-
thority and takes as input the security parameter 1κ

and attribute universe U , generates system public
parameters params and the master key MSK. The

Authority publishes params and keeps MSK secret
to itself.

Encrypt(M , params, S, TS): Given the public
parameters params, the shared message M which
the owner wants to encrypt, the attribute set S and
the set of time intervals TS in which every element
in TS is associated with a corresponding attribute in
S. This algorithm generates the ciphertext CT which
is associated with the fuzzy attribute set S.

KeyGen(MSK,Υ, T ′): This algorithm takes as
input the master key MSK, the access tree Υ and
the time set T ′. Every attribute x in Υ is associated
with a time instant tx ∈ T ′. It outputs a private key
SK which contains Υ.

Decrypt(CT, SK): This algorithm takes as input
the ciphertext CT and the private key SK. When a
set of time-specific attributes satisfies Υ, it is able
to decrypt the ciphertext and return the plaintext M .

3.4 Security model for KP-TSABE
KP-TSABE security is defined by the following
games between an adversary A and a challenger
B.

Init. The adversary A declares the attribute set
γ∗ that he wishes to be challenged upon.

Setup. The challenger B runs the Setup algorithm
to generate params and MSK. The params is given
to A.

Phase 1. A generates repeated private keys cor-
responding to many access structures Aj and time
instants in which none of these attribute structures
satisfies that γ∗ ∈ Aj .

Challenge. A submits two equal-length messages
M0, M1, and a challenge attribute set γ∗. B flips
a random coin b, and encrypts Mb under γ∗. The
ciphertext CT ∗ is given to A.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 7

Phase 2. Same as in phase 1.
Guess. A outputs a guess b′ of b.
The advantage of A in this game is defined as

AdvA = Pr [b′ = b]− 1
2
.

Definition 3. The KP-TSABE scheme is indistin-
guishable secure against selective attribute chosen
plaintext attack if all polynomial time adversaries
have at most a negligible advantage in the above
game.

4 CONSTRUCTION OF THE KP-TSABE
SCHEME

In this section, we will present the KP-TSABE
scheme in two levels: System Level and Algorithm
Level. System level describes the implementations
of the upper operations, while algorithm level main-
ly focuses on the concrete details of the underly-
ing algorithms which are invoked by system level
operations [3]. The details of these two levels are
described as follows.

4.1 System descriptions of the KP-TSABE
1) System setup

In the system initialization phase, a data owner
chooses a large security parameter κ and attribute
universe U , and invokes the algorithm Setup(1κ, U)
belonging to the algorithm level to generate system
parameters params and master key MSK.
2) Encryption with time constraint

The data owner chooses an attribute set S for the
shared message M and defines a time interval set TS
for S. Then, the data owner invokes the algorithm
Encrypt(M , params, S, TS) to encrypt M to its
ciphertext CT, which is associated with the set S
and TS . Finally, CT is sent to cloud servers.
3) Fine-grained access control during the authoriza-
tion period

When a user wants to access the shared data
M during its authorization period, he must pass
the identity authentication and should perform the
following processes:

Firstly, the current time instant tx is provided by
the time server with tx ∈ T ′, which is associated
with each attribute x. If T ′ ⊆ TS and the attribute
set of the user matches the access tree Υ. Then, the
Authority runs the algorithm KeyGen(MSK,Υ, T ′)
to generate the private key SK and sends it to the
user. Once the user received the SK, he will get

the CT from the cloud servers and invokes the
algorithm Decrypt(CT, SK) to decrypt CT to obtain
the shared data M .

Because each attribute x is associated with a
current time instant tx, if and only if tx ∈ TS and
attribute set matches Υ, the user can obtain the
correct private key SK to decrypt CT. Therefore,
the KP-TSABE scheme allows for extremely flex-
ible implementation of fine-grained access control
through combining different attributes with corre-
sponding time intervals.
4) Data self-destruction after expiration

Once the current time instant tx becomes after the
threshold value (expiration time) of the valid time
interval tR,x, the user cannot obtain the true private
key SK. Therefore, the cyphertext CT is not able
to be decrypted in polynomial time, facilitating the
self-destruction of the shared data after expiration.

4.2 Algorithm constructions of the KP-
TSABE
In this section, we will give the concrete con-
structions of the KP-TSABE scheme. In order to
implement fine-grained access control, we associate
every attribute in the attribute set with a time
interval (authorization period). The attribute is valid
if and only if the current time instant is in this time
interval. Only if the valid attribute in the ciphertext
satisfies the access tree in the key, the algorithm can
decrypt the message correctly. The algorithm level
of the KP-TSABE scheme includes four algorithms:
Setup, Encrypt, KeyGen, and Decrypt.

Setup(1κ,U): Let G be a bilinear group of
prime order p, let g be a generator of G, and
let e : G × G → G′ be a bilinear map. In
addition, let T be the maximum time in the system
that is provided by the time server which satisfies
|T | = n′. We choose a big security parameter
κ, and define the universe of all attributes U =
{1, · · · , n}. Then, we choose y from Zp randomly
and set g1 = gy. Meanwhile, we choose g2, u′1,1, · · · ,
u′n,1, u

′
1,2, · · · , u′n,2, u1, · · · , uT ∈ G randomly.

The public parameters is published as:

params = {g, g1, g2, {∀i = 1 : n, u′i,1, u
′
i,2},

{∀j = 1 : T, uj}}.

The master key MSK is: MSK = gy2 .
Encrypt(M , Satt, params, T ′): To encrypt a

message M under a set of attributes Satt with every

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 8

attribute i ∈ Satt, where i is constrained by a time
interval T ′

i ∈ [tmL,i
, tmR,i

], choose a random value
s ∈ Zp, define cL,i as index, let cL,i = n′−mL,i and
publish the ciphertext as:

CT = {CM =M · e(g, g2)sy, gs, Satt, {E =

(u′i,1
∏mR,i+1

j=1 u
tj
j)

s, E ′ = (u′i,2
∏cL,i

j=1 u
T−tj
j)s,

T ′
i}i∈Satt}.

KeyGen(params,MSK,Υ, Tk): This algorithm
inputs the public parameters params, the master
key MSK ∈ G′, the access tree Υ and the time
instant set Tk in which the element of Tk is asso-
ciated with the leaf node of Υ. It outputs a private
key SK also associated with Υ.

The algorithm proceeds as follows. First, it choos-
es a polynomial qx for each node x except the leaves
nodes in Υ. These polynomials are chosen in a top-
down manner, starting from the root node r, which
is described as follows.

For non-leaf node x in Υ, set the degree dx of the
polynomial qx and its threshold value kx satisfying
dx = kx − 1. For the root node r, set qr(0) = y
and choose other dr points randomly to completely
define the polynomial qr. For any other node x,
set qx(0) = qparent(x)(index(x)) and pick dx other
points of qx randomly to define it completely [8].

We define a leaf node x ∈ SY in the tree as an
attribute which is constrained by a time instant t′nx

.
SY denotes as the leaf node set of Υ. The algorithm
randomly chooses rx, r′x ∈ Zp, defines nx be the
index which lets cx = n′ − nx, computes and gives
the following secret value d to the user:

d = {Dx,1, Dx,2, g
rx , gr

′
x , urxnx+2 · · · ,

urxT , u
r′x
cx+1 · · · , u

r′x
T , tnx}x∈SY

,

where

Dx,1 = g
qx(0)+τx
2 (u′i,1

∏nx+1
j=1 u

tj
j)

rx ,

Dx,2 = g−τx
2 (u′i,2

∏cx
j=1 u

T−tj
j)r

′
x .

Decrypt(CT, SK): The decryption procedure is
a recursive algorithm which is from bottom to up.
In order to decrypt the ciphertext successfully, the
valid attribute set (for x ∈ Satt, tnx ∈ [tmL,x

, tmR,x
])

should satisfy Υ, where the node x is a leaf node,
[tmL,x

, tmR,x
] is the time interval associated with x

belongs to the ciphertext, while tnx associated with
x belonging to the private key.

For the leaf node x: If tnx /∈ [tmL,x
, tmR,x

] , the
decryption algorithm simply outputs ⊥. Otherwise,

the algorithm chooses random r′′x, r
′′′
x ∈ Zp and

calculates:

dupp1 = {a0, grR,x ·gr′′x , urR,x

mR,x+2·u
r′′x
mR,x+2 · · · , u

rR,x

T ·ur
′′
x
T },

dupp2 = {b0, grL,x ·gr′′′x , u
rL,x

cL,x+1·u
r′′′x
cL,x+1 · · · , u

rL,x

T ·ur
′′′
x
T },

where

a0 = Dx,1(u
′
i,1

∏mR,x+1
j=nx+1 u

tj
j)

rR,x(u′i,1
∏mR,x+1

j=1 u
tj
j)

r′′x

= g
qx(0)+τx
2 (u′i,1

∏mR,x+1
j=1 u

tj
j)

rR,x+r′′x .

b0 = Dx,2(u
′
i,2

∏cL,x

j=cx
u
T−tj
j)rL,x(u′i,2

∏cL,x

j=1 u
T−tj
j)r

′′′
x

= g−τx
2 (u′i,2

∏cL,x

j=1 u
T−tj
j)rL,x+r′′′x .

Then, the algorithm calculates as follows:

DN =
e(gs, a0) · e(b0, gs)

e(E, grR,x+r′′x) · e(grL,x+r′′′x , E ′)
= e(g, g2)

sqx(0).

We now consider a non-leaf node x with all nodes
z that are the children of x. Let Sx be an arbitrary
kx-sized set of child nodes z such that Fx ̸= ⊥.
If no such set exists, we say that the node is not
satisfied and the function returns ⊥.

Otherwise, the algorithm calculates:

Fx =
∏
c∈Sx

F
∆i,S′

x
(0)

c =
∏
c∈Sx

(
e(g, g2)

s·qc(0)
)∆i,S′

x
(0)

=
∏
c∈Sx

(
e(g, g2)

s·qparaent(c)(0)
)∆i,S′

x
(0)

=
∏
c∈Sx

e(g, g2)
s·qx(i)·∆i,S′

x
(0) = e(g, g2)

s·qx(0).

If we invoke the function on the root node r of
the tree Υ, and if the tree is satisfied by SY , we set:

Ω = e(g, g2)
s·qr(0) = e(g, g2)

s·y.

Therefore, we can use Ω to decrypt CM to obtain
the shared message M .

5 SECURITY OF THE KP-TSABE
Theorem 1. If the decisional l-BDHI assumption
holds in (G,G′, e), then the KP-TSABE scheme is
indistinguishable secure against selective attribute
set chosen plaintext attack.

Proof. Suppose A has advantage δ in attacking the
KP-TSABE system. Using A, we build an algorithm
B that solves the l-BDHI assumption in G.

For a random generator g ∈ G and y ∈ Zp, we
define gi = gy

i ∈ G. B is given a random tuple

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 9

C ′ = (g, h, y1, · · · , yl, K) as input. The C ′ is either
sampled from PBDHI (where K = e(g, h)y

l+1) or
from RBDHI (where K is uniform and independent
in G′). B outputs 1 when the input tuple is sampled
from PBDHI and 0 otherwise. B works by interact-
ing with A as follows:

Init: The simulator B runs A. A chooses the set
of attributes S∗

att it wishes to be challenged upon.
For att∗(j) ∈ S∗

att, att
∗(j) is constrained by the time

interval [T ∗
n , T

∗
m], where T ∗

n = (t∗1, · · · , t∗n) ∈ (Z∗
p)

j

of depth n ≤ l, T ∗
m = (t∗1, · · · , t∗m) ∈ (Z∗

p)
j of depth

m ≤ l that it intends to attack. If n < l(m < l),
then B pads T ∗

n (T ∗
m) with l− n(l−m) zeros on the

right to make att∗(j) a vector of length l.
Setup: To generate the system parameters, B

picks a random γj ∈ Zp and sets g1 = y1 = gy

and g2 = yl · gγ = gγ+yl . Next, B picks random
γ1, · · · , γl ∈ Zp and sets uj = gγj/yl−j+1 for j =
1, · · · , l. B also picks random δx, ηx ∈ Zp and sets
u′x,1 = gδx

∏l
i=1 y

t∗i
l−i+1 and u′x,2 = gηx

∏l
i=1 y

l+t∗i
l−i+1.

Finally, B gives A the public parameters
params = (g, g1, g2, u

′
x,1, u

′
x,2, u1, · · · , ul). The

master key corresponding to the public parameters
gy2 = gy(y

l+γ) which is unknown to B since B does
not have yl+1. It then gives the public parameters to
A.

Phase1: A adaptively makes requests for the
private keys. We first define the following two
procedures: PolySat and PolyUnsat.

PolySat(Γx, S, λx): This procedure sets up the
polynomials for the nodes of an access sub-tree
with satisfied root node, that is, Γx(S) = 1. The
procedure takes an access tree Γx (with root node
x) as input along with a set of attributes S and an
integer λx ∈ Zp. It first sets up a polynomial qx of
degree dx for the root node x. It sets qx(0) = λx and
then sets rest of the points randomly to completely
fix qx. If the algorithm reaches the leaf node, it
sets qk(0) = a

ω∗
k+1

k b. Now it sets polynomials for
each child node x′ of x by invoking the proce-
dure PolySat(Γx′ , S, qx(index(x

′)). Notice that in
this way, qx′ = qx(index(x

′)) for each child node
x′ of x.

PolyUnsat(Γx, S, g
λx): This procedure sets up the

polynomials for the nodes of an access tree with
unsatisfied root node, that is, Γx(S) = 0. The
procedure takes an access tree Γx (with root node
x) as input along with a set of attributes S and an
element gλx ∈ G (where λx ∈ Zp). It first defines a

polynomial qx of degree dx for the root node such
that qx(0) = λx. Because Γx(S) = 0 no more than
dx children of x are satisfied. Let hx ≤ dx be the
number of satisfied children of x. For each satisfied
child x′ of x, the procedure chooses a random point
λx′ ∈ Zp and sets qx(index(x′)) = λx′ . It then fixes
the remaining dx − hx points of qx randomly to
completely define qx. Now the algorithm recursively
defines polynomials for the rest of the nodes in the
tree as follows. For each child node x′ of x, the
algorithm invokes:

-PolySat(Γx′ , S, qx(index(x
′)). If x′ is a satisfied

node. Notice that qx(0) is known in this case.
-PolyUnsat(Γx′ , S, gqx(index(x

′))), if x′ is not a sat-
isfied node. Notice that only gqx(index(x

′)) can be
obtained by interpolation as only gqx(0) is known
in this case.

To give keys for access structure Γ, simulator B
first runs PolyUnsat(Γ, S, A) to define a polynomial
qx for each node x of Γ. Notice that for each leaf
node x of Γ, we know qx completely if it is satisfied;
If x is not satisfied, then at least gqx(0) is known
(in some cases qx might be known completely).
Furthermore, qr(0) = y.

The query for the private key for the leaf n-
ode x which is associated with Tn, where Tn =
(t1, · · · , tn). We define T ′

n = (t1, · · · , T − tn). To
respond to the query, B first generates a private
key for the time Tj = (t1, · · · , tj) (the restriction
is that tj ̸= t∗j for tj ∈ {t1, · · · , tm}) and T ′

j =
(t1, · · · , T − tj) where tj ≤ T (the restriction is that
tj ̸= t∗j for tj ∈ {t1, · · · , T−tn}). Then it constructs
for attribute x for the time Tn = (t1, · · · , tj, · · · , tn)
and T ′

n = (t1, · · · , T − tj, · · · , T − tn)
To generate the private key for the leaf node

x which is constrained by (t1, · · · , tj), B picks a
random rx in Zp. We pose rx = r̃x+

yj

(tj+1−t∗j+1)
∈ Zp.

We show that B can calculate all elements of the
private key given the values at its disposal. To
generate the first component of the private key for
the attribute x, we observe that:

(u′x,1
∏j+1

i=1 u
ti
i)

rx =(
gδx+

∑j+1
i=1 tiγi ·

j∏
i=1

y
(t∗i−ti)

l−i+1 · yt
∗
j+1−tj+1

l−j

l∏
i=j+2

y
t∗i
l−i+1

)rx

.

Let Zx represent the product of the first, second
and fourth terms. We have

Zx =

(
gδx+

∑j+1
i=1 tiγi ·

j∏
i=1

y
(t∗i−ti)

l−i+1 ·
l∏

i=j+2

y
t∗i
l−i+1

)rx

.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 10

Next, we observe the third term is:

y
(t∗j+1−tj+1)rx

l−j = y
(t∗j+1−tj+1)r̃x

l−j · y
(t∗j+1−tj+1)

yj

(tj+1−t∗
j+1

)

l−j

= y
(t∗j+1−tj+1)r̃x

l−j /yl.

Hence, the first component of the private key for
the attribute x is:

g
qx(0)+τx
2 (u′x,1

∏j+1
i=1 u

ti
i)

rx

= g(qx(0)+τx)(yl+γ)(u′x,1
∏j+1

i=1 u
ti
i)

rx

= y
(t∗j+1−tj+1)r̃x

l−j g(qx(0)+τx)(1+γ/yl)Zx.

Similarly, we construct the second component of
the private key for the attribute x. We pose r′x =

r̃′x +
yk−1

(tk−t∗k)
, and we observe that:

(u′x,2
∏k

i=1 u
T−ti
i)r

′
x =(

gηx+
∑k

i=1 (T−ti)γi ·
k−1∏
i=1

y
(t∗i−ti)

l−i+1

)r′x

·(
y
t∗k−tk
l−k+1 ·

l∏
i=k+1

y
T−t∗i
l−i+1

)r′x

.

Let Z ′
x represent the product of the first, second

and fourth terms. That is

Z ′
x=

(
gηx+

∑k
i=1 (T−ti)γi ·

k−1∏
i=1

y
(t∗i−ti)

l−i+1 ·
l∏

i=k+1

y
T+t∗i
l−i+1

)r′x

.

Next, we observe the third term is:

y
(t∗k−tk)r

′
x

l−k+1 = y
(t∗k−tk)r̃

′
x

l−k+1 · y
(t∗k−tk)

yk−1

(tk−t∗
k
)

l−k+1 =y
(t∗k−tk)r̃x
l−k+1 /yl.

Hence, the second component of the private key
for the attribute x is constructed as:

g−τx
2 (u′i,2

∏k

i=1
uT−ti
i)s=y

(t∗k−tk)r̃x
l−k+1 g(−τx)(1+γ/yl)Z ′

x.

For all the leaf nodes, yl can be canceled and all
terms in the expression are known to B. Also, B can
also calculate the component grx , gr′x , urxj+2 · · · , u

rx
l ,

u
r′x
k+1 · · · , u

r′x
l . B uses this leaf node component of

the private key to derive a private key for the Tn,
T ′
n and gives the result to A.
Challenge: When A assures that Phase 1 is over,

A submits two challenge messages M0,M1 ∈ G to
the simulator B. B then flips a fair binary coin, τ ,
and returns an encryption of Mτ . The ciphertext is
outputted as:

CT = (Mτ ·K · e(y1, hγ), h, {hδi+
∑l

j=1 t
∗
jγj ,

hηi+
∑l

j=1 (T−t∗j)γj , T ∗
i }i∈Satt).

First note that if h = gc (for some unknown c in
Zp) then,

hδi+
∑l

j=1 t
∗
jγj

= (gδi
∏l

j=1 y
t∗j
l−j+1 ·

∏l
j=1 (g

γj/yl−j+1)
t∗j)c

= (u′i,1
∏l

j=1 u
t∗j
j)

c,

hηi+
∑l

j=1 (T−t∗j)γj

= (gηi
∏l

j=1 y
T−t∗j
l−j+1 ·

∏l
j=1 (g

γj/yl−j+1)
T−t∗j)c

= (u′i,2
∏l

j=1 u
T−t∗j
j)c,

e(g, h)y
l+1 · e(y1, hγ) = (e(y1, yl)e(y1, g

γ))c

= e(y1, ylg
γ)c = e(g1, g2)

c.

If K = e(g, h)y
l+1 is a valid l-BDHI tuple,

then the challenge CT is a valid encryption of Mτ .
Otherwise, the K is uniform and independent in
G′ (the input tuple is sampled from RBDHI), the
challenge CT is independent of τ in A’s view.

Guess. A will eventually outputs a guess τ ′ of τ .
If τ = τ ′, then B outputs 1 to indicate that K =
e(g, h)y

l+1 . Otherwise, it outputs 0 to indicate that
it believes K is a random group element in Zp.

When K is a tuple, the simulator B gives a perfect
simulation so we have that

Pr
[
B
(
y, K = e(g, h)y

l+1
)
= 0
]
=

1

2
+ AdvA.

When K is a random group element, the message
Mτ is completely hidden from A and we have
Pr [B(y, K = R) = 0] = 1

2
.

Therefore, B is able to play l-BDHI game with
non-negligible advantage.

6 COMPARISON AND ANALYSIS

In this section, the comprehensive comparison is
first described, and then the theoretical analysis of
the KP-TSABE scheme is presented.

6.1 Comprehensive comparison
The KP-TSABE scheme is proved to be secure
under the standard model. Therefore, we system-
atically compare this scheme with the existing self-
destruction solutions (e.g., Vanish [23], SSDD [24],
ISS [22], and FullPP [3]) from the following aspect-
s, e.g., prerequisite condition, algorithm, resistance
on attacks, fine-grained access control, user-defined
authorization period, etc. The result of the compre-
hensive comparison is shown in Table 1.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 11

TABLE 1
Comprehensive comparisons of the security properties

Security properties Vanish[23] SSDD[24] ISS[22] FullPP[3] KP-TSABE

Need “no attacks on VDO before it expires”? YES YES YES NO No need
Leveraging what kind of algorithm? Symmetric Symmetric IBE ID-TRE KP-TSABE
Whether ciphertext is destructed or not? NO YES YES YES No need
Whether the key is destructed or not? YES YES YES YES No need
Resistance on the traditional cryptanalysis? NO YES YES YES YES
Resistance on the Sybil attacks? NO NO YES YES –
Resistance on the collusion attack? – – – – YES
Supporting fine-grained access control? NO NO YES YES YES
Providing full lifecycle privacy protection? NO NO NO YES YES
Supporting user-defined time intervals? NO NO NO Half YES
Security proof under standard model? NO NO NO YES YES

Prerequisite condition. All the schemes of Van-
ish [23], SSDD [24] and ISS [22] need the ideal
assumption “no attacks on VDO before it expires”.
Since a Sybil adversary is able to crawl sufficient
key shares from the DHT network to reconstruct the
decryption key. Once the adversary gets the VDO
from the cloud servers before it expires, he/she will
decrypt it with the reconstructed decryption key
to obtain the plaintext. FullPP [3] does not need
this ideal assumption because the decryption key
is encrypted by the ID-TRE algorithm. Even if the
adversary crawls sufficient key shares from the DHT
network, he cannnot reconstruct the decryption key
since he does not have the ID-TRE private key. KP-
TSABE also does not need the ideal assumption
because it does not require the DHT network.

Algorithm and resistance on attacks. Since both
Vanish [23] and SSDD [24] only use symmetric
encryption to encrypt the sensitive message, they
bring complex key management and cannot achieve
fine-grained access control for different users with
different attributes. Vanish sends the entire cipher-
text to the cloud server, so it cannot resist against the
traditional cryptanalysis. Since the SSDD scheme
distributes a part of the ciphertext and the decryption
key to the DHT network, both of which will be
self-destructed after expiration, so the cloud server
stores incomplete ciphertext. Therefore, SSDD can
resist against the traditional cryptanalysis. However,
Vanish and SSDD cannot resist against the Sybil
attackers who can continually crawl the key shares
from the DHT network to recover the decryption key
[25]. In contrast, both ISS [22] and FullPP [3] can

not only resist against the traditional cryptanalysis
and the Sybil attacks but also implement flexible
access control because of the IBE and ID-TRE
algorithms. KP-TSABE does not have the problem
of the Sybil attacks because there is no use of the
DHT network. Furthermore, it can provide fine-
grained access control through combining different
attributes with variance time intervals.

User-defined authorization period. Vanish [23],
SSDD [24], ISS [22] and FullPP [3] leverage the
DHT network to store the key shares or the hybrid
ciphertext shares, which are self-discarded by the
DHT nodes after a period of time. So the expiration
time is limited by the update period of the DHT
network and it cannot be controlled by the sensitive
data owner. Better than those schemes, in the KP-
TSABE scheme, every attribute in the attribute set
associated with the ciphertext is matched with a time
interval, which is the authorization period of the
sensitive data and is predefined by the data owner.
Therefore, the authorization period and the expira-
tion time are not limited by the system constraint,
but flexibly to be defined by the owner.

Security proof. Vanish [23], SSDD [24], and ISS
[22] do not provide the security proof. The ID-TRE
in the FullPP scheme is proved to be secure un-
der the Bilinear Diffie-Hellman (BDH) assumption.
Furthermore, the KP-TSABE scheme is proved to be
secure under the standard model with the decision
l-Expanded BDHI assumption to resist against the
traditional cryptanalysis and the collusion attack.

In conclusion, the KP-TSABE scheme is supe-
rior to the existing self-destruction solutions from
several security properties.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 12

6.2 Theoretical analysis

In this section, we make the theoretical analysis of
the proposed KP-TSABE scheme from the aspects
of the computational cost and communication over-
head.
1) Computational cost

In this analysis, we focus on the most time-
consuming operations, paring and exponentiation
conducted in groups G and G′. Let ψ, ω, and ϖ
respectively denote their computation times and let
O (TREE) be the computation complexity of the
decryption TREE. We let ϑ be the attribute set
used in decryption. The computational cost of each
procedure in KP-TSABE is summarized in Table 2.

Since the computational cost seems to be ex-
pensive, we can alleviate the computational cost
by pre-computation. For instance, in the Encryp-
t phase, e(g, g2)y can be calculated by e(g1, g2).
The terms (u′i,1

∏mR,i+1
j=1 u

tj
j) and (u′i,2

∏cL,i

j=1 u
T−tj
j)

can also be precalculated by choosing proper tj ,
mR,i and cL,i. Thus, the total computational cost
can be reduced to 1ω + 1ϖ + 2|Satt|ω. Similar-
ly, in KeyGen phase, the terms (u′i,1

∏nx+1
j=1 u

tj
j)

and (u′i,2
∏cx

j=1 u
T−tj
j) can also be pre-computed.

Then, the computational cost in key generation
is |SY |(2|T | + 5 − nx − cx)ω. In Decrypt stage,
(u′i,1

∏mR,x+1
j=nx+1 u

tj
j) and (u′i,1

∏mR,x+1
j=1 u

tj
j) in a0 can

be preprocessed by chosen proper nx and mR,x.
The computation of b0 can be made similarly.
The final computation cost is O (TREE)ϖ +
|ϑ|[4ψ + (4T + 6− 2mR,x − 2cL,x)ω].
2) Communication overhead

Table 3 analyzes the communication overhead of
the KP-TSABE scheme through calculating the bit-
length of the group elements included in the cipher-
text and the key generation. It does not include the
set of the attributes Satt, tree access policy, and the
definition of the time instant, because their costs
are negligible if compared with the key generation
and ciphertext. We let |G| and |G′| be the bit-
length of the element in G and G′, respectively.
In the key generation phase, the authority has to
generate the keys for each user. The size of the
private key is |SY |(2|T | + 3 − nx −mx)|G|. After
encrypting, the data owner needs to upload the
encrypted message to the cloud server. The size of
ciphertext is 1|G′|+ (1 + 2|Satt|)|G|.

Although the computational cost seems to be
expensive, optimizations are made to alleviate the

computational cost. After the optimization, the fi-
nal computational cost is located in a reason-
able range. In compensation to this, the proposed
KP-TSABE scheme provides a big advantage by
supporting user-defined time-specific authorization,
fine-grained access control and data secure self-
destruction, which are not well satisfied by the
existing schemes.

7 CONCLUSIONS

With the rapid development of versatile cloud ser-
vices, a lot of new challenges have emerged. One
of the most important problems is how to securely
delete the outsourced data stored in the cloud severs.
In this paper, we proposed a novel KP-TSABE
scheme which is able to achieve the time-specified
ciphertext in order to solve these problems by im-
plementing flexible fine-grained access control dur-
ing the authorization period and time-controllable
self-destruction after expiration to the shared and
outsourced data in cloud computing. We also gave
a system model and a security model for the KP-
TSABE scheme. Furthermore, we proved that KP-
TSABE is secure under the standard model with
the decision l-Expanded BDHI assumption. The
comprehensive analysis indicates that the proposed
KP-TSABE scheme is superior to other existing
schemes.

ACKNOWLEDGMENTS

This work is supported by the Key Program of
NSFC-Guangdong Union Foundation under grant
No.U1135002, the National Natural Science Foun-
dation of China under grant No.61402109 and
No.61370078, the Changjiang Scholars and Inno-
vative Research Team in University under grant
No.IRT1078, the Fundamental Research Funds for
the Central Universities under grant No.JB142001-
12. We thank the reviewers for helpful comments.

REFERENCES

[1] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public
auditingfor shared data in the cloud,” Cloud Computing, IEEE
Transactions on, vol. 2, no. 1, pp. 43–56, 2014.

[2] J. Xiong, Z. Yao, J. Ma, X. Liu, Q. Li, and J. Ma, “Priam:
Privacy preserving identity and access management scheme in
cloud,” KSII Transactions on Internet and Information Systems
(TIIS), vol. 8, no. 1, pp. 282–304, 2014.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 13

TABLE 2
Computational cost

KP-TSABE

Setup 2ω
Encryption 1ψ + 1ω + 1ϖ + |Satt|(mR,i + 3 + cL,i)ω

Key generation |SY |(2|T |+ 6)ω
Decryption O (TREE)ϖ + |ϑ|[4ψ + (4T + 11− nx − cx)ω]

TABLE 3
Communication overhead

Communication overhead KP-TSABE

Data owner to cloud server 1|G′|+ (1 + 2|Satt|)|G|
Authority to user |SY |(2|T |+ 3− nx −mx)|G|

[3] J. Xiong, F. Li, J. Ma, X. Liu, Z. Yao, and
P. S. Chen, “A full lifecycle privacy protection
scheme for sensitive data in cloud computing,” Peer-
to-Peer Networking and Applications. [Online]. Available:
http://dx.doi.org/10.1007/s12083-014-0295-x

[4] P. Jamshidi, A. Ahmad, and C. Pahl, “Cloud migration research:
A systematic review,” Cloud Computing, IEEE Transactions on,
vol. 1, no. 2, pp. 142–157, 2013.

[5] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient
and privacy-preserving computing in big data era,” Network,
IEEE, vol. 28, no. 4, pp. 46–50, 2014.

[6] X. Liu, J. Ma, J. Xiong, and G. Liu, “Ciphertext-policy hierar-
chical attribute-based encryption for fine-grained access control
of encryption data,” International Journal of Network Security,
vol. 16, no. 4, pp. 351–357, 2014.

[7] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Advances in Cryptology–EUROCRYPT 2005, ser. LNCS, vol.
7371. Springer, 2005, pp. 457–473.

[8] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proceedings of the 13th ACM conference on Computer and
Communications Security. ACM, 2006, pp. 89–98.

[9] A. F. Chan and I. F. Blake, “Scalable, server-passive, user-
anonymous timed release cryptography,” in Proceedings of the
International Conference on Distributed Computing Systems.
IEEE, 2005, pp. 504–513.

[10] K. G. Paterson and E. A. Quaglia, “Time-specific encryption,”
in Security and Cryptography for Networks. Springer, 2010,
pp. 1–16.

[11] Q. Li, J. Ma, R. Li, J. Xiong, and X. Liu, “Large universe
decentralized key-policy attribute-based encryption,” Security
and Communication Networks, 2014. [Online]. Available:
http://dx.doi.org/10.1002/sec.997

[12] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proceedings of the 28th IEEE
Symposium on Security and Privacy. IEEE, 2007, pp. 321–
334.

[13] L. Cheung and C. C. Newport, “Provably secure ciphertext
policy abe,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 456–
465.

[14] B. Waters, “Ciphertext-policy attribute-based encryption: An
expressive, efficient, and provably secure realization,” Public

Key Cryptography–PKC 2011, pp. 53–70, 2011.
[15] A. Shamir, “How to share a secret,” Communications of the

ACM, vol. 22, no. 11, pp. 612–613, 1979.
[16] R. Ostrovsky, A. Sahai, and B. Waters, “Attribute-based encryp-

tion with non-monotonic access structures,” in Proceedings of
the 14th ACM Conference on Computer and Communications
Security. ACM, 2007, pp. 195–203.

[17] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scal-
able, and fine-grained data access control in cloud computing,”
in Proceedings of the 29th IEEE International Conference on
Computer Communications. IEEE, 2010, pp. 1–9.

[18] P. Tysowski and M. Hasan, “Hybrid attribute- and re-
encryption-based key management for secure and scalable
mobile applications in clouds,” Cloud Computing, IEEE Trans-
actions on, vol. 1, no. 2, pp. 172–186, 2013.

[19] J. Reardon, D. Basin, and S. Capkun, “Sok: Secure data
deletion,” in Proceedings of the 34th IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 1–15.

[20] C. Cachin, K. Haralambiev, H.-C. Hsiao, and A. Sorniotti,
“Policy-based secure deletion,” in Proceedings of the ACM
Conference Computer and Communications Security. ACM,
2013, pp. 152–167.

[21] J. Reardon, H. Ritzdorf, D. Basin, and S. Capkun, “Secure data
deletion from persistent media,” in Proceedings of the 2013
ACM Conference on Computer and Communications Security.
ACM, 2013, pp. 271–284.

[22] J. Xiong, Z. Yao, J. Ma, F. Li, and X. Liu, “A secure self-
destruction scheme with ibe for the internet content privacy,”
Chinese Journal of Computers, vol. 37, no. 1, pp. 139–150,
2014.

[23] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish: In-
creasing data privacy with self-destructing data,” in Proceedings
of the 18th USENIX Security Symposium, 2009, pp. 299–315.

[24] G. Wang, F. Yue, and Q. Liu, “A secure self-destructing scheme
for electronic data,” Journal of Computer and System Sciences,
vol. 79, no. 2, pp. 279–290, 2013.

[25] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J. A.
Halderman, C. J. Rossbach, B. Waters, and E. Witchel, “De-
feating vanish with low-cost sybil attacks against large dhts,”
in Proceedings of the 17th Annual Network and Distributed
System Security Conference, NDSS. ISOC, 2010, pp. 1–15.

[26] L. Zeng, S. Chen, Q. Wei, and D. Feng, “Sedas: A self-
destructing data system based on active storage framework,”

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2372758, IEEE Transactions on Cloud Computing

IEEE TCC, VOL. XX, NO. X, XX 2014 14

IEEE Transactions on Magnetics, vol. 49, no. 6, pp. 2548–2554,
2013.

[27] D. Boneh and M. Franklin, “Identity-based encryption from the
weil pairing,” SIAM Journal on Computing, vol. 32, no. 3, pp.
586–615, 2003.

[28] J. Xiong, Z. Yao, J. Ma, X. Liu, and Q. Li, “A secure document
self-destruction scheme: An abe approach,” in Proceedings of
the 15th IEEE International Conference on High Performance
Computing and Communications. IEEE, 2013, pp. 59–64.

[29] J. Xiong, Z. Yao, J. Ma, F. Li, X. Liu, and Q. Li, “A secure
self-destruction scheme for composite documents with attribute
based encryption,” Acta Electronica Sinica, vol. 42, no. 2, pp.
366–376, 2014.

[30] J. H. Cheon, N. Hopper, Y. Kim, and I. Osipkov, “Provably
secure timed-release public key encryption,” ACM Transactions
on Information and System Security (TISSEC), vol. 11, no. 2,
p. 4, 2008.

[31] A. W. Dent and Q. Tang, “Revisiting the security model for
timed-release encryption with pre-open capability,” in Proceed-
ings of the Information Security. Springer, 2007, pp. 158–174.

[32] R. Kikuchi, A. Fujioka, Y. Okamoto, and T. Saito, “Strong
security notions for timed-release public-key encryption revisit-
ed,” in Proceedings of the Information Security and Cryptology.
Springer, 2012, pp. 88–108.

[33] K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung,
G. Hanaoka, and H. Imai, “Time-specific encryption from
forward-secure encryption,” in Security and Cryptography for
Networks. Springer, 2012, pp. 184–204.

[34] D. Boneh, X. Boyen, and E.-J. Goh, “Hierarchical identity
based encryption with constant size ciphertext,” in Advances
in Cryptology–EUROCRYPT 2005. Springer, 2005, pp. 440–
456.

[35] A. Beimel, “Secure schemes for secret sharing and key dis-
tribution,” Ph.D. dissertation, PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel, 1996.

