IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

2107

An Efficient Certificateless Encryption for
Secure Data Sharing in Public Clouds

Seung-Hyun Seo, Member, IEEE, Mohamed Nabeel, Member, IEEE,
Xiaoyu Ding, Student Member, IEEE, and Elisa Bertino, Fellow, IEEE

Abstract—We propose a mediated certificateless encryption scheme without pairing operations for securely sharing sensitive
information in public clouds. Mediated certificateless public key encryption (mCL-PKE) solves the key escrow problem in identity
based encryption and certificate revocation problem in public key cryptography. However, existing mCL-PKE schemes are either
inefficient because of the use of expensive pairing operations or vulnerable against partial decryption attacks. In order to address the
performance and security issues, in this paper, we first propose a mCL-PKE scheme without using pairing operations. We apply our
mCL-PKE scheme to construct a practical solution to the problem of sharing sensitive information in public clouds. The cloud is
employed as a secure storage as well as a key generation center. In our system, the data owner encrypts the sensitive data using the
cloud generated users’ public keys based on its access control policies and uploads the encrypted data to the cloud. Upon successful
authorization, the cloud partially decrypts the encrypted data for the users. The users subsequently fully decrypt the partially
decrypted data using their private keys. The confidentiality of the content and the keys is preserved with respect to the cloud, because
the cloud cannot fully decrypt the information. We also propose an extension to the above approach to improve the efficiency of
encryption at the data owner. We implement our mCL-PKE scheme and the overall cloud based system, and evaluate its security and
performance. Our results show that our schemes are efficient and practical.

Index Terms—Cloud computing, certificateless cryptography, confidentiality, access control

1 INTRODUCTION

UE TO the benefits of public cloud storage, organiza-
D tions have been adopting public cloud services such as
Microsoft Skydrive [18] and Dropbox [11] to manage their
data. However, for the widespread adoption of cloud stor-
age services, the public cloud storage model should solve
the critical issue of data confidentiality. That is, shared sen-
sitive data must be strongly secured from unauthorized
accesses. In order to assure confidentiality of sensitive data
stored in public clouds, a commonly adopted approach
is to encrypt the data before uploading it to the cloud.
Since the cloud does not know the keys used to encrypt
the data, the confidentiality of the data from the cloud is
assured. However, as many organizations are required to
enforce fine-grained access control to the data, the encryp-
tion mechanism should also be able to support fine-grained
encryption based access control. As shown in Fig. 1, a typi-
cal approach used to support fine-grained encryption based
access control is to encrypt different sets of data items to
which the same access control policy applies with different
symmetric keys and give users either the relevant keys [4],
[19] or the ability to derive the keys [20], [23]. Even though

e The authors are with the Department of Computer Science, Purdue
University, West Lafayette, IN 47907 USA.
E-mail: {se029, nabeel, ding55, bertino}@purdue.edu.

Manuscript  received 21 Dec. 2012; revised 19 Apr. 2013; accepted
3 July 2013. Date of publication 4 Aug. 2013; date of current version
31 July 2014.

Recommended for acceptance by E. Ferrari.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier 10.1109/TKDE.2013.138

the key derivation-based approaches reduce the number of
keys to be managed, symmetric key based mechanisms in
general have the problem of high costs for key manage-
ment. In order to reduce the overhead of key management,
an alternative is to use a public key cryptosystem. However,
a traditional public key cryptosystem requires a trusted
Certificate Authority (CA) to issue digital certificates that
bind users to their public keys. Because the CA has to
generate its own signature on each user’s public key and
manage each user’s certificate, the overall certificate man-
agement is very expensive and complex. To address such
shortcoming, Identity-Based Public Key Cryptosystem (IB-
PKC) was introduced, but it suffers from the key escrow
problem as the key generation server learns the private keys
of all users. Recently, Attribute Based Encryption (ABE)
has been proposed that allows one to encrypt each data
item based on the access control policy applicable to the
data. However, in addition to the key escrow problem,
ABE has the revocation problem as the private keys given
to existing users should be updated whenever a user is
revoked. In order to address the key escrow problem in
IB-PKC, Al-Riyami and Paterson introduced a new cryp-
tosystem called Certificateless Public Key Cryptography
(CL-PKC) [2].

Lei et al. [16] then proposed the CL-PRE (Certificateless
Proxy Re-Encryption) scheme for secure data sharing in
public cloud environments. Although their scheme is based
on CL-PKC to solve the key escrow problem and certificate
management, it relies on pairing operations. Despite recent
advances in implementation techniques, the computational
costs required for pairing are still considerably high

1041-4347 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2108
(3) Selectively encrypt
& upload _
Owner - — Cloud
(5) Download to re-encrypt
(1) Register (4) Dowgfload &
@) s dgCrypt
User

Fig. 1. Symmetric key based fine-grained encryption.

compared to the costs of standard operations such as mod-
ular exponentiation in finite fields. Moreover, their scheme
only achieves Chosen Plaintext Attack (CPA) security. As
pointed out in [3], CPA security is often not sufficient to
guarantee security in general protocol settings. For exam-
ple, CPA is not sufficient for many applications such as
encrypted email forwarding and secure data sharing that
require security against Chosen Ciphertext Attack (CCA).
In this paper, we address the shortcomings of such
previous approaches and propose a novel mediated
Certificateless Public Key Encryption (mCL-PKE) scheme
that does not utilize pairing operations. Since most CL-PKC
schemes are based on bilinear pairings, they are computa-
tionally expensive. Our scheme reduces the computational
overhead by using a pairing-free approach. Further, the
computation costs for decryption at the users are reduced
as a semi-trusted security mediator partially decrypts the
encrypted data before the users decrypt. The security
mediator acts as a policy enforcement point as well and
supports instantaneous revocation of compromised or mali-
cious users. In Section 5, we show that our scheme is
much more efficient than the pairing based scheme pro-
posed by Lei et al. [16]. Moreover, compared to symmetric
key based mechanisms, our approach can efficiently man-
age keys and user revocations. In symmetric key systems,
users are required to manage a number of keys equal to
at least the logarithm of the number of users, whereas in
our approach, each user only needs to maintain its pub-
lic/private key pair. Further, revocation of users in a typical
symmetric key system requires updating the private keys
given to all the users in the group, whereas in our approach
private keys of the users are not required to be changed.
Based on our mCL-PKE scheme, we propose a novel
approach to assure the confidentiality of data stored in
public clouds while enforcing access control requirements.
There are five entities in our system: the data owner, users,
the Security Mediator (SEM), the Key Generation Center
(KGC), and the storage service (see Fig. 2 for a high-
level architecture of our approach). The SEM, KGC, and

(3) Encrypt using public
keys of users & upload

Owner - > Cloud

(2) Public keys

(1)ID 2) Private
Key

(4) Download &

User decrypt

Fig. 2. CL-PKE based fine-grained encryption.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

(3) Encrypt using public
keys of owner & upload
encrypted data and
intermediate keys

Y

Owner Cloud

(2) Public keys

()0 2 Ffivate
Ke

4) Download
data and
intermediate key,
&
decrypt

User

Fig. 3. CL-PKE with intermediate keys based fine-grained encryption.

the storage service are semi-trusted and reside in a public
cloud. Although they are not trusted for the confidentiality
of the data and the keys, they are trusted for executing the
protocols correctly. According to the access control policy,
the data owner encrypts a symmetric data encryption key
using mCL-PKE scheme and encrypts the data items using
symmetric encryption algorithm. Then, data owner uploads
encrypted data items and the encrypted data encryption
key to the cloud. Notice that a major advantage of our
approach compared to conventional approaches is that the
KGC, which is the entity in charge of generating the keys,
resides in a public cloud. Thus, it simplifies a task of key
management for organizations.

In a conventional CL-PKE scheme, user’s complete pri-
vate key consists of a secret value chosen by the user and
a partial private key generated by the KGC. Unlike the CL-
PKE scheme, the partial private key is securely given to the
SEM, and the user keeps only the secret value as its own
private key in the mCL-PKE scheme. So, each user’s access
request goes through the SEM which checks whether the
user is revoked before it partially decrypts the encrypted
data using the partial private key. It does not suffer from the
key escrow problem, because the user’s own private key is
not revealed to any party. It should be noted that neither
the KGC nor the SEM can decrypt the encrypted data for
specific users. Moreover, since each access request is medi-
ated through the SEM, our approach supports immediate
revocation of compromised users.

It is important to notice that if one directly applies our
basic mCL-PKE scheme to cloud computing and if many
users are authorized to access the same data, the encryp-
tion costs at the data owner can become quite high. In such
case, the data owner has to encrypt the same data encryp-
tion key multiple times, once for each user, using the users’
public keys. To address this shortcoming, we introduce an
extension of the basic mCL-PKE scheme. Our extended
mCL-PKE scheme requires the data owner to encrypt the
data encryption key only once and to provide some addi-
tional information to the cloud so that authorized users
can decrypt the content using their private keys. Fig. 3
gives a high-level view of the extension. The idea is similar
to Proxy Re-Encryption (PRE) by which the data encryp-
tion key is encrypted using the data owner’s public key
and later can be decrypted by different private keys after
some transformation by the cloud which acts as the proxy.
However, in our extension, the cloud simply acts as stor-
age and does not perform any transformation. Instead, the
user is able to decrypt using its own private key and an
intermediate key issued by the data owner.



SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS

Our main contributions are summarized as follows:

o We propose a new mCL-PKE scheme. We present
the formal security model and provide the secu-
rity proof. Since our mCL-PKE scheme does not
depend on the pairing-based operation, it reduces
the computational overhead. Moreover, we intro-
duce an extension of mCL-PKE scheme to efficiently
encrypt data for multiple users.

o We propose a novel approach to securely share data
in a public cloud. Unlike conventional approaches,
the KGC only needs to be semi-trusted and can
reside in the public cloud, because our mCL-
PKE scheme does not suffer from the key escrow
problem.

o We have implemented our mCL-PKE scheme and the
extension to evaluate the performance. The experi-
mental result shows that our mCL-PKE scheme can
be realistically applied in a public cloud for secure
data sharing.

The remainder of this paper is organized as follows:
Section 2 introduces our mCL-PKE scheme without pairing,
and presents a security model and security proof. Section 3
proposes an approach for secure sharing data in public
clouds. Section 4 proposes the extended scheme for secure
cloud storage. Section 5 shows the performance evaluation.
Section 6 discusses related works and Section 7 concludes
the paper.

2 MCL-PKE SCHEME WITHOUT PAIRINGS

In this section, we present the mediated Certificateless
Public Key Encryption (mCL-PKE) scheme and its security
model. Then, we prove the formal security of mCL-PKE
scheme.

2.1 Definitions

Definition 1. The mediated certificateless public key
encryption scheme is a 7-tuple mCL-PKE=(SetUp,
SetPrivateKey, SetPublicKey, SEM-KeyExtract, Encrypt,
SEM-Decrypt, USER-Decrypt). The description of each
algorithm is as follows.

o SetUp: It takes a security parameter k as input and
returns system parameters params and a secret master
key mk. We assume that params are publicly available
to all users.

o SetPrivateKey: It takes params and ID as input and
outputs the user’s (the owner of ID) secret value SKip.
Each user runs this algorithm.

o SetPublicKey: It takes params and a user’s secret value
SKip as input and returns the user’s public key PKp.

o SEM-KeyExtract: Each user registers its own identity
and public key to the KGC. After the KGC verifies the
user’s knowledge of the private key corresponding to its
public key, the KGC takes params, mk and user identity
ID as input and generates a SEM-key corresponding to ID
required during decryption time by the SEM. The KGC
runs this algorithm for each user, and we assume that the
SEM-key is distributed securely to the SEM.

o Encrypt: It takes params, a user’s identity ID, a user’s
public key PKip, and a message M as inputs and returns

2109

either a ciphertext Cip or a special symbol L meaning an
encryption failure. Any entity can run this algorithm.

o SEM-Decrypt: It takes params, a SEM-key, and a
ciphertext Cip as input, and then returns either a partial
decrypted message Cjp, for the user or a special symbol L
meaning an decryption failure. Only the SEM runs this
algorithm using SEM-key.

o USER-Decrypt: It takes params, a user’s private key
SKip, the partial decrypted message Cj, by the SEM as
input and returns either a fully decrypted message M or
a special symbol L meaning an decryption failure. Only
the user can run this algorithm using its own private key
and the partial decrypted message by the SEM.

Definition 2. The Computational Diffie-Hellman (CDH)
problem is defined as follows: Let p and q be primes such
that q|(p — 1). Let g be a generator of Zj. Let A be an
adversary. A tries to solve the following problem: Given
(g, 8% &) for uniformly chosen a, b, c € Zyy, compute k = g™,
We define A’s advantage in solving the CDH problem by
Adv(A)=Pr[A(g. g, g") = ™.

2.2 Security Model of Mediated CL-PKE

In general, in order to construct the security model of a
mediated CL-PKE scheme [9], we must consider two types
of adversaries: Type 1 adversary A; and Type II adver-
sary Aj. A type I adversary A; means a normal third
party attacker which does not know the master key, but
can replace public keys of users. That is, .4; does not have
access to the master key, but is able to choose any public
key to be used for the challenge ciphertext. A type II adver-
sary Aj is a malicious KGC which has the master key, but
is unable to replace public keys of users. That is, A can
have access to the master key, but can use only a registered
public key for the challenge ciphertext. We do not need to
consider a malicious SEM explicitly, because it is weaker
than Aj;.

In order to describe the security of the mediated CL-PKE
scheme, we consider a formal game where the adversary
A interacting with their Challenger as follows. The adver-
sary A can be either A; or Aj. The Challenger should
keep a history of query-answer while interacting with the
adversaries.

A Formal Game for an adversary A

o SetUp: The Challenger runs SetUp by taking a
security parameter k as input in order to return sys-
tem parameters params and a master key mk. The
Challenger gives params to the adversary A and
keeps mk secret.

o Phase 1: The adversary A can adaptively make var-
ious queries and the Challenger can respond to the
queries as follows:

- SEM-key for ID Extraction: The Challenger
runs SEM-KeyExtract to generate the SEM-key
do using an identity ID and params as the
input.

- Public Key Request for ID: The Challenger runs
SetPrivateKey to generate SKjp, and then runs
SetPublicKey to generate the public key PKip



2110

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

using ID, SKjp and params as the input. It
returns PKjp to A.

- Public Key Replacement: The adversary A can
repeatedly replace the public key for any iden-
tity with any value of its choice. The SEM-
key is also updated if the Challenger bundles
the public key with the identity for SEM-
key creation. The replaced public key will be
used in the rest of the game unless replaced
again.

— Private Key Extraction for ID: The Challenger
runs SetPrivateKey to generate SKjp using ID
as the input. It returns SKip to .A. However,
if the public key of ID has been already
replaced by the adversary A, this query is
disallowed.

- SEM-Decryption: The adversary provides
an identity ID and a ciphertext Cip. The
Challenger responds with the partial decryp-
tion Cj, under the SEM-key dy that is
associated with the identity ID.

- USER-Decryption: The adversary provides
an identity ID and a ciphertext Cj,. The
Challenger responds with the decryption of
Cjp under the private key SKp that is asso-
ciated with the identity ID.

Challenge Phase: Once A determines that Phase 1
is over, it outputs a challenge identity ID* and a
pair of plaintext (Mo, M1) with an equal length. In
case that A is a Aj, it chooses a public key of iden-
tity ID*, PKjp~ by using the Public Key Replacement
query. For the identity ID*, A; cannot ask both the
SEM-Key Extraction query and Private Key Extraction
query. If A is a Aj;, the public key of identity ID*
cannot be replaced. For the identity ID*, Aj can-
not ask Private Key Extraction query. The Challenger
picks B er {0, 1} and creates a target ciphertext Cjp+
which is the encryption of Mg under the public key
of ID*. In case of Aj, the public key of ID* is PKjp-.
Otherwise, the public key of ID* is the original one.
The Challenger returns Cip- to A.

Phase 2: A continues to issue more queries, but
it cannot issue both the SEM-Key Extraction query
and Private Key Extraction query for the ID*. If
Az has requested the private key corresponding to
the public key PKjp+, then it cannot make a SEM-
Decrypt query for Cip+. On the other hand, if Azz
has requested the SEM-key corresponding to ID*, it
cannot make a USER-Decrypt query for Cj,. where
Cip« is the result of SEM-Decrypt query for Cip+.
Guess: A outputs its guess bit g’ er {0, 1}.

In case of g’ = B, A wins. We define Ay’s advantage
in the above game by 2 x ’Pr[ﬂ’ =Bl - %‘1 e {ILII}. A
mediated CL-PKE scheme is IND-CCA secure if there is no
probabilistic polynomial-time adversary in the above games
with non-negligible advantage in the security parameter
k. The security of our mediated certificateless public key

encryption scheme is based on the assumed intractability
of the CDH problem.

2.3 Basic Algorithm

SetUp:

KGC takes as input a security parameter k to gen-
erate two primes p and g such that glp — 1. It then
performs the following steps:

1)  Pick a generator g of Z; with order 4.

2)  Select x € Zj uniformly at random and com-
pute y = g¢*.

3) Choose cryptographic hash  functions
H1:{0, 1}* XZ; — Z;‘, Hy:{0, 1}* XZ;XZ; — Z;‘,
H3:{0,1y  — Zi, HyZy — {01},
Hs:Zj — {0,1)"%, and He:Z;; x {0, 1}"H0 x
75 x {0,1y"tko  — 7* where n,ky are the
bit-length of a plaintext and a random bit
string, respectively.

The system parameters params are (p,q,n,ko,g,
y. H1, Hp, H3, Hy, Hs5, Hg). The master key of KGC
is x. The plaintext space is M = {0,1}" and the
ciphertext space is C = Zj x {0, 1)tk Zg.
SetPrivateKey:

The entity A chooses z4 € Zj uniformly at random
as the private key of A.

SetPublicKey:

The entity A computes U = g%4.

SEM-KeyExtract:

KGC selects sp,s1 € Z; and computes wy = g%,
wy = g%, dy = sop + xHy(IDa,wp), d1 = s1 +
xH (IDa, wo, w1). KGC sets dy as the SEM-key for
A. After A proves the knowledge of the secret value
za such that Uy = g*4, KGC sets (Ua, wo, w1, d1) as
the A’s public keys.

Encrypt:

To encrypt a plaintext M € {0, 1}" for the entity A
with identity ID4 and public keys (Ua, wo, w1, dq), it
performs the following steps:

1)  Check whether g% = w; - yt2(Dawow)),
If the checking result is not valid, encryption
algorithm must be aborted.
2) Choose o € {0, 1} and
compute ¥ = H3 (M, 0, 1D, Ux).
3) Compute C; =g".
4)  Compute C = (M||o) & Hy (Ua") @& Hs (w)-
yH] (IDA,ZU())'T’).
5) Compute C3
C3 = He (Ua, (M||o) ® Hy4 (U7) , C1, Ca).
Output the ciphertext C = (Cy, Cz, C3).
In Step 1, an entity who wants to encrypt a message
can verify the validity of receiver’s public key. From
Step 2 to Step 5 are the process of encryption.
SEM-Decrypt:
Given the ciphertext C = (Cy, C2, C3),aID4, A’s pub-
lic keys (Ua, wo, w1, d1), SEM performs the following
steps using the SEM-key do:

1) Check that ID4 is a legitimate user whose key
has not been revoked.

2) Compute C1%.
Cldo — gi'»do — gr‘(50+xH1(IDA,wO))
— gr~so .grle(lDA,wg) — wOr . yr‘Hl(IDA.wo).



SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS 2111

3) Compute C2 & Hs (C‘fo).
C, o Hs ()
= (Mllo) ® Hs (UA") & Hs (w], - yH1IPa-w0)7) g
Hs(CP) = Moy © Hi(Ux) e
Hs (w}, yth (IDA-WO)'T) @ Hs (), yth (IDA,ZUO)~r) _
(Mllo) @ Hy (UA").

4)  Check whether C3 =
Hg (UA, C, ® Hs (C‘f[)) ,Cq, C2>.

If it is valid, SEM sends C; and C, = (Mllo) &
Hy(U4") to A. Otherwise, abort SEM-Decrypt.
In Step 1, SEM ascertains whether the user’s identi-
fication information is valid. In Step 2 SEM performs
the partial decryption of the ciphertext C using SEM-
key. In Step 3, SEM computes token information that
is needed for complete decryption in USER-Decrypt
algorithm. After SEM finishes executing the partial
decryption and the token generation, it performs the
validity checking for the ciphertext C in Step 4. In
order to prevent from the partial decryption attack,
Step 4 must be required.

« USER-Decrypt:
Given C; and C/2 from the SEM, A performs the
following steps using his private key za:

1) Compute C;*
Cle — g"ZA — ng-r — UAV

2) Parse M and o’ from M'|lo’ = Hy (C1*) & C,

3) Compute ¥’ = H3 (M',0’,IDa, Un) and g"

4)  Check whether g’ = C;
If the verification succeeds then return the fully
decrypted message M’ = M. Otherwise, the USER-
Decrypt must be aborted. In Step 1 and Step 2, user
A fully decrypts C, using own private key z4. After
A computes the value for a validity checking in Step
3, A ascertains whether the decryption is successful
in Step 4.

2.4 Security Analysis

The security of our mCL-PKE scheme is based on the
assumed intractability of the CDH problem. The following
theorem summaries the security of our scheme.

Theorem 1. Our mediated certificateless public key encryption
scheme mCL-PKE is IND-CCA secure against Type I and
Type 11 adversaries in the random oracle model, under the
assumption that the CDH problem is intractable.

In order to prove the Theorem 1, we have to consider
both kinds of adversaries (Type I and Type II) to estab-
lish the chosen ciphertext security of the above mCL-PKE
scheme. Thus, the Theorem 1 is proved based on Lemma 1
and 2. We adopt the security proof techniques from [25].

Lemma 1. Suppose that the hash functions H;(i = 1,2,
3,4,5,6) are random oracles and there exists a Type I
IND-CCA adversary Az against the mCL-PKE scheme with
advantage e when running in time t, making qpyp public
key requests queries, qsem SEM-key extraction queries, qpyi
private key extraction queries, qypr public key replacement
queries, qps SEM decryption queries, qp,, USER decryption
queries and q; random oracle queries to H; (1 <i < 6). Then,

for any (0 < 8 < ¢), there exists either an algorithm B to
solve the CDH problem with advantage €' > qlSPr [AskH:] >

1 [ _ea-9haR 6 4 3 _ IosHip
ning in time T = max {t + (q1 + g2 + 43 + ga + g5 + 96) O(1)+
(qpub + qpubR + qDg + QDU) (Stexp + O(l)) s CEI2f/€}/ where
texp denotes the time for computing exponentiation in Z,
and c is constant greater than 120,686 assuming that
€ > 10 (gsem + 1) (gsem + q2) /q, or an attacker who breaks
the EUF-CMA(existential unforgeability under adaptive
chosen message attack) security of the Schnorr signature with
advantage § within time T.

Proof. In order to prove Lemma 1, we assume that the

Schnorr signature scheme is EUF-CMA secure with
advantage § (0 < 8 < ¢) within time T. Let Az
be a Type I IND-CCA adversary against the mCL-PKE
scheme. By using Az, we show how to construct an
algorithm B to solve the CDH problem. Suppose that
B is given a random instance (g,g" ") of the CDH
problem. B sets y = ¢" and simulates the SetUp algo-
rithm of the mCL-PKE scheme by supplying Az with
(p,q,n, ko, gy, Hi, Ha, H3, Hy, Hs, Hp) as public param-
eters, where Hi, Hp, H3, Hy, Hs, Hg are random oracles
controlled by B. B can simulate the Challenger’s execu-
tion of each phase of the formal Game. A7 may make
queries to random oracles H;(1 <i < 6) at any time and
B responds as follows:

Hj queries: Bmaintains a Hy list of tuples ((ID;, wy;), €o;)-
On receiving such a query on (ID;, wy;), B first check if
there is a tuple ((ID;, wo;), ep;) on the Hj list. If there is,
then B returns ey;,. Otherwise, B chooses ¢y, €r Z;‘, adds
((ID;, wy;), ep;) to the Hy list and returns e;.

H; queries: B maintains a Hp list of tuples ((ID;, wy;,
w1;), e15). On receiving such a query on (ID;, wy;, w1;), B
first checks if there is a tuple ((ID;, wo;, w1;), e1;) on the
Hj list. If there is, return eq;. Otherwise, BB picks e1; €r Z;’;,
adds ((ID;, wy;, w1;), e1;) to the Hy list and returns ey;.

Hj3 queries: B maintains a Hj list of tuples ((M;, o;, ID;,
U;), rij). On receiving such a query on (M;, o;, ID;, U;),
B first checks if there is a tuple ((M;, o0, ID;,
U;), r;) on the Hj list. If there is, return r;. Otherwise,
B picks r; er Z;‘ and returns 7;.

Hy queries: B maintains a Hy list of tuples (A, h).
On receiving such a query on A, B first checks if there
is a tuple (A, h) on the Hy list. If there is, return 5.
Otherwise, B picks 11 eg {0, 1)"*%0, adds (A, k1) to the
Hy list and returns hy.

Hs queries: B maintains a Hs list of tuples (B, hy).
On receiving such a query on A, B first checks if there
is a tuple (B, hp) on the Hs list. If there is, return h;.
Otherwise, B picks hy er {0,1}"*%0, adds (B, hy) to the
Hs list and returns hy.

Hg queries: B maintains a Hg list of tuples ((U;, C,
D, E), h3). On receiving such a query on (U;,C, D, E), B
first checks if there is a tuple ((U;, C, D, E), h3) on the
Hg list. If there is, return h3. Otherwise, B picks h3 eg
{0, 1}tk and returns h3.

Phase 1: A7 launches Phase 1 of its attack by making
a series of requests, each of which is either a Public Key
Request, a SEM-Key Extraction, a Private Key Extraction,



2112

a Public Key Replacement, a SEM-Decryption or a USER-

Decryption query. O

Public Key Request: B maintains a public key list
(ID;, (U;, wo;, w14, d1i), coin). On receiving such a query on
ID;, B responds as follows:

1)  If there is a tuple (ID;, (U;, wo;, w1, d1;), coin) on the
list, B returns (U;, wy;, w1;, d;)-

2)  Otherwise, B picks coin € {0, 1} with Pr[coin = 0] =
y (y will be determined in the Guess).

e In case of coin = 0, choose dy;, di;, eoi, €1,
zi €rR 17}, compute wy = ngiy‘EO",wu =
ghiy=ei U; = ¢%. (Check the Hj list and if
there is a tuple ((ID;, wy;), ep), select again
doi, e0i €R Z;; Check the H, list and if
there is a tuple ((UIDj;, wp;, w1;),e1), select
again dj;,e1; €r Z;) Add ((IDj, wy;), ep;)
to the Hi list, ((ID;, wo;, wy;), e1;) to the Hj
list, (ID;, do;, (woi, w1;, d1;)) to the partial key
list, (ID;,z;) to the private key list and
(ID;, (Uj, wo;, wy;, d1;)) to the public key list.
Return (U;, wy;, Wy, d1;) as answer.

o In case of coin = 1, choose sy;, d1, €1i, zi €R Z;‘,
compute wy; = gSOivwli _ gdliyfeli’ u; = gZi'
(Check the H» list and if there is a tuple
((ID;, woi, w1;), e1), select again dy;, e1; €r Z;;.)
Add (UD;, wg;, wi;), eq;) to the Hp list and
(ID;, (U;, wo;, wy;, d1;), Soi, coin) to the public
key list. Return (U, wo;, w1, d1;) as answer.

SEM-Key Extraction: B maintains a partial key list of
tuples (ID;, do;, (wo;, w1, d1;)). On receiving such a query on
ID;, B responds as follows:

1) 1If a tuple (ID;, dy;, (wy;, wi;, dq;)) exists on the list, B
returns do; as the SEM-key and (wp;, wy;, dq;) as the
partial public key.

2) Otherwise, B runs the simulation algorithm for
public key request by using ID; as input.

e In case of coin = 0, B searches the partial
key list of the form (ID;, dy;, (wo;, w1, d1;)) and
returns do; as the SEM-key.

e In case of coin =1, B aborts.

Private Key Extraction: B maintains a private key list
of tuples (IDj;, z;). On receiving such a query on ID;, B
responds as follows:

1) If a tuple (ID;, z;) exists on the list, B returns z; as
the private key.

2) Otherwise, B runs the simulation algorithm for
public key request by using ID; as input.

o In case of coin =0, B searches the partial key
list (ID;, z;) and returns z; as the private key.
o In case of coin =1, B aborts.

Public Key Replacement: A7 can replace the pub-
lic key of any user ID;, (U;, wy;, w;, dr;) with any
value (Ul’.,wf)i,w/li,d/li) of its /choice. If (wéi,w/li/, d/l/l.) £
(woi, wy;, d1;) but it satisfies gdli = wj; - yHZ(IDi’woi’wli), B
aborts. Otherwise, B records the change.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

SEM-Decryption queries: Az can request B to decrypt
partially ciphertext C for ID;. B searches the public key list
for a tuple (ID;, (U;, wo;, wni, d1;), coin). Then B responds as
follows:

1)  If the public key has not been replaced and coin = 0,

e BB searches the partial key list for a tuple
(ID;, doi, (woi, w1, d1;))-

o B computes C1% and G, @ H5(C'f°")

e B checks whether C3 = HgU;,Cy @
H5(C'i°i), C1. Cp). If it is valid, B returns C, =
C @ H5(C‘il°i). Otherwise, B outputs L.

2) Otherwise, B searches the Hj list for a tuple
((M;, 03, ID;, Uy), 1i), where Cy = g",
Co = (M;l|o;) @ Hy (Uiri) @ Hs (wg’l -yHl(IDi’in)'ri) and
Cs = He (Ui, (Milloy) @ Hy (U") , C1, C2). B returns
the corresponding C, = (M;||o;) ® Hy(U;") if such a
tuple exists. Otherwise, B outputs L.

USER-Decryption queries: This query should be per-
formed after SEM-Decryption query performing. Az can
request B to perform User-decryption for Cy, C,. B searches
the public key list for a tuple (ID;, (U;, wy;, wij, d1;), coin).
Then B responds as follows:

1)  If the public key has not been replaced and coin = 0,

o B searches private key list of tuples (ID;, z;).

o B computes C1% and Hy(Ci%).

o B parses M’ and o’ from M'||o’ = H4(C1%) &
C,.

o B computes r' = H3(M'||o’||ID;||U;) and grl.

o B checks whether ¢" = Cy. If ¢ = Cy, it
returns M’ = M. Otherwise, B outputs L.

2) Otherwise, B searches the Hj list for a tuple
(M, 04, ID;, Uy), 1), where Cp = g",
Ca = (Milloy) @ Hy (Uj") & Hs (uwy, - y" Do) 7i)
and C3 = He (Ui, Milloy) @ Hy (U)),C1.C2). B
returns the corresponding M; if such a tuple exists.
Otherwise, B outputs L.

Challenge Phase: A7 outputs ID* and two messages
Moy, My on which it wishes to be challenged. On receiv-
ing ID*, B searches the public key list for the tuple
(ID*, (U*, w§, wt, d}) , coin). Then B responds as follows:

1) If coin = 0, B aborts the game.
2)  Otherwise, B performs the following actions:

e B picks o* e {0,1}%, B eg {0, 1} and
Cs. C5 eg {0, 1} +ho,

o Bsets Cf =g, ¢ = Hi(ID*, w}), b = H3(Mp,
o*,ID*, U"), ¢ = Hy (U™), Hs (w - i) =
Cs @& (Mgllo*) @ ¢ and He (U*|| (Mgllo*)
@c||CF1I1C5) = C3.

o Boutputs (C], C3, C3) as the challenge cipher-
text. According to the above construction,
Cs = Mylio™) ® Hy (U) @ Hs (wpl - y*) =

(Mgllo™) @ H4(U*b) ® Hs (gbss -g“bea).



SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS

Phase 2: B continues to respond to Az’s requests in the
same way as it did in Phase 1. Az cannot make a SEM-
Key Extraction query or a Private Key Extraction query on
ID*. For the combination of ID* and (U* wg, wy, dT) used
to encrypt Mg, Az should not make decryption query on
(C1. G5, C3).

Guess: Eventually, Az outputs its guess. B chooses

a random pair (B,h) from the Hs list and outputs
1

< B_)% (= g™) as the solution to the CDH problem.

b5

Analysis. First of all, we evaluate the simulation of the
random oracles given above. It is evident that the simula-
tions of H; and H; are perfect through the constructions
of Hy and H». Moreover, as long as Az does not query
(Mg, o*,ID*, U*) to Hz nor u* to Hy nor wéb -yeéb to Hs
nor U*||(Mgllo™) @ c||C][IC; to He, the simulations of H3,
Hy, Hs and Hg are perfect. Let AskH; denote the event that
(Mg, o*, ID*, U*) has been queried to H3, AskH} denote the
event that U*" has been queried to Hy, ASkH; denote the
event that wéb . %" has been queried to Hs and AskH}
denote the event that U*||(Mgl|lo*) @ c||C]|IC; has been
queried to He.

The simulated challenge ciphertext is identically dis-
tributed as the real one, because Hs, Hy, H5 and Hg are
random oracles. Now we evaluate the simulation of the
decryption oracle. As to the simulation of decryption
oracle, B will wrongly reject a valid ciphertext during
the simulation with probability smaller than W%.

That is, Pr[DecErr] < m, where DecErr denotes
the event that B rejects a valid ciphertext during the
simulation.

Let E = (AskH; v AskH; v AskHj; v AskHZ v
DecErr)|—=Abort. If E does not happen during the simula-
tion, B will not gain any advantage greater than 1/2 to
guess B, because of the randomness of the output of Hs.
In other words, Pr[g’ = B|—E] < 1/2. We obtain Pr[p’ =
Bl = Pr[p' = BI—EIPr[—E] + Pr[g’ = BIEIPr[E] < }Pr[—E] +
Pr[E] = } + 1Pr[E].

By definition of ¢, we have ¢ < 2(Pr[' = f] —% <

Pr[Asng]—&-Pr[AskH;]+Pr[As_kHZ]+Pr[AskH§]+Pr[DecErr]

PT[E] = Pr[—Abort] '

The probability that B does not abort during the simula-

tion is given by y% i (1 — y)(1 — §)%R . This probability

is maximized at y = 1 — W Therefore, we have

(1— 6)‘7p11bR

PT[_'AbOT’t] = e(qsem‘i‘qmi‘i‘l)'
natural logarithm.

Hence, we obtain the following Pr[AskHi| > ePr

[—Abort]—Pr [AskH; | — Pr [AskH}; | —Pr [AskH} | — Pr[DecErr]

where e denotes the base of the

€cAQ-9)T® g6 g 43 s +dpy

> - @ @
T e(qsem + qGpri +1) 2k 2k 2k q

If AskHZ happens, then Az will be able to distinguish the

simulation from the real one. Az can tell that the challenge

ciphertext C* by the simulation is invalid. Hs (wa‘b «yeab)

has been recorded on the Hj list. Then, B wins if it chooses
the correct element from the Hs list. Therefore, we obtain
the advantage for B to solve the CDH problem.

2113
1 1 1 — §)9pubR
€ > —Pr[AskHi] = — ¥_‘776_q74
q5 q5 e(%em + qprl + ].) 2ko 2ko

_ 93 qps +qpy
2ko q '

The running time of the B who is the CDH attacker
is bounded by T = max{t + (g1 + 92 + g3 + g4 + g5 +
76)0(1) + (qub + GpubR + qDs + QDU)(Stexp + O0)), cqat/e€},
where t.y, denotes the time for computing exponentiation
in Zy, and c is constant greater than 120,686 assuming that
€ > 10(gsem + 1)(Gsem + 92)/q. This estimation is from the
result of [21].

Lemma 2. Suppose that the hash functions H;(i = 1,2,3,
4,5, 6) are random oracles and there exists a Type 1I IND-
CCA adversary Azz against the mCL-PKE scheme with
advantage & when running in time t, making qpu pub-
lic key requests queries, gsew SEM-key extraction queries,
qpri private key extraction queries, qupr public key replace-
ment queries, qps; SEM decryption queries, qp, USER
decryption queries and q; random oracle queries to H;
(1 < i < 6). Then, there exists an algorithm B to solve
the CDH problem with advantage € > q%Pr [AskH;] =

1 qDg+q9D . . .

L (m _ 2% — 2‘1750 — 2‘1730 — M) running in time
T <t+@1+492+93+494+95+96)O) + (Gpup + gpg +
qDy) Atexp +0O(1)), where teyy denotes the time for computing

exponentiation in Z.

Proof. Let Azz be a Type II IND-CCA adversary against
the mCL-PKE scheme. By using A7z, we show how
to construct an algorithm B to solve the CDH prob-
lem. Suppose that B is given a random instance
(3.8".¢") of the CDH problem. B chooses x &g
Zy, computes y = g° and simulates the SetUp
algorithm of the mCL-PKE scheme by supplying
Azz with (p,q,n,ko, g, y. H1, Hy, H3, H4, Hs, Hp), where
Hy, Hy, H3, Hy, H5, Hg are random oracles controlled by
B. B can simulate the Challenger’s execution of each
phase of Game. A7z may make queries to H;(1 <7 < 6)
at any time during its attack and B responds as follows:

H; queries: B maintains a H; list of tuples
((IDj, wy;), epi). On receiving a query on (ID;, wy;), B does
the following;:

1) If ((ID;, wy;), eg;) is on the Hy list, B returns ey;.
2)  Otherwise, B chooses ¢y; €r Z*, adds ((ID;, wy;), eo;)
to the Hj list and returns eg;.

Hj queries: B maintains a Hp list of tuples ((ID;, wy;,
w1;), e1;). On receiving a query on (ID;, wy;, wy;), B first
checks if ((ID;, wo;, w1;), e1;) is on the Hj list, return ey;.
Otherwise, B picks eq; e Z}, adds ((ID;, wo;, w1;), e1;) to
the Hp and returns eq;.

Hj3 queries: B maintains a Hj list of tuples ((M;, o;, ID;,
U;), ri). On receiving a query on (M;, o, ID;, U;), B first
checks if ((M;, oj, ID;, U;), r;) is on the Hsz list, return ;.
Otherwise, B picks r; € Z;‘ and returns ;.

Hj queries: B maintains a Hy list of tuples (A, i1). On
receiving a query on A, B first checks if (A, h) is on the
Hy list, return hy. Otherwise, B picks h; er {0, 1}”+k0,
adds (A, hy) to the Hy and returns h;.

Hs queries: B maintains a Hs list of tuples (B, k). On
receiving a query on A, B first checks if (B, hy) is on the



2114

Hs list, return hy. Otherwise, B picks hy er {0, 1}”+k0,
adds (B, hy) to the Hj list and returns hy.

Hg queries: B maintains a Hp list of tuples
((U;,C, D, E), h3). On receiving a query on (U;,C, D, E),
B first checks if ((U;, C, D, E), h3) is on the Hg list, return
h3. Otherwise, B picks h3 €r {0, 1}tk and returns hs.

Phase 1: A7z launches Phase 1 of its attack by making
a series of requests, each of which is either a Public Key
Request, a Private Key Extraction, a SEM-Decryption or
a USER-Decryption query.

Compute SEM-Key: A7z computes the SEM-key dy;
and the partial public key (wo;, wy;, d1;) for ID;, B keeps
(ID;, doi, (woi, wi;, d1;)) to the partial key list.

Public Key Request: B maintains a public key list of
tuples (ID;, (U;, wo;, w1;, d1;), coin). On receiving a query
on ID;, B responds as follows:

1) If (ID;, (Uj, wo;, wyj, d1j), coin) is on the public key
list, B returns (Uj;, wy;, w1, d1;)-

2)  Otherwise, B picks coin € {0, 1} with Pr[coin = 0] =
y (y will be determined later).

o In case of coin = 0, B chooses z; €r Z;, com-
pute U; = g*. Then, it searches the partial key
list to get the partial public key (wy;, w1;, d1;),
adds (ID;, (U;, wo;, w1j, d1;), zi, coin) to the
public key list and returns (U;, wo;, w1;, d1;).

e In case of coin = 1, B sets U; = g~
Then, it searches the partial key list to get
the partial public key (wp;, w1;, d1;), adds
(ID;, (U;, wo;, w1, di;), ?, coin) to the public key
list and returns (U;, wy;, w1;, di;).

Private Key Extraction: B maintains a private key
list of tuples (ID;, z;). On receiving a query on ID;, B
responds as follows:

1) If (ID;, z;) exists on the private key list, B returns z;.

2)  Otherwise, B runs the simulation algorithm for pub-
lic key request by using ID; as input in order to get
a tuple (ID;, (U;, wo;, wii, d11), zi, coin).

o In case of coin =0, B returns z;.
o In case of coin =1, B aborts.

SEM-Decryption queries: A7z can request B to
decrypt partially C = (Cy, C2, C3) for ID;. B runs the
simulation algorithm for public key request taking ID;
as input to get (ID;, (U;, woi, wai, d1;), zi, coin). Then, B
performs the following;:

1) If coin = 0, B searches the partial key list and the
private key list for a tuple (ID;, (dy;, z;)). Then, it
computes C1%i and C,®Hy (C‘lio"). B checks whether

Cs = He(Us, Cr @ Hy (c;’Of) ,C1,Cy). If it is valid, B

returns C;, = Co®Hy (C?O"). Otherwise, B outputs L.

2) Otherwise, B searches the Hs list for a tuple
(M, 07, ID;, Uj), rj) satisfying C; = g, Co =
(M;lloy) @ Hs (U;"7) @ Hs (wy; - yH1UDiw0d 1) and C3 =
He(U;, (M;||o;) @ H4(U;"), C1, Cy). B returns the cor-
responding C, = (M;||o;) ® Ha(U;") if such a tuple
exists. Otherwise, B outputs L.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

USER-Decryption queries: This query should be per-
formed after SEM-Decryption query performing. Azz
can request B to perform User-decryption for Cy, C, for
ID;. B searches the public key list taking ID; as input
to get (ID;, (U;, wo;, wij, d1i), zi, coin). Then BB responds as
follows:

1) If coin =0,

o B searches private key list of tuples (ID;, z;).

o B computes C1% and H4(C1%).

o Bparses M’ and ¢’ fromM'||o'= Hy(C1*) D C;.

« B computes ' = Hy(M'||o’||ID;||U}), §" .

e B checks if g’/ = (Cq, it returns M’ = M.
Otherwise, B outputs L.

2) Otherwise, B searches the Hj; list for
((M;, 07, ID;, Uj), rj) satisfying C; = g, Co =
(Milloy) ® Ha(Ui") @ Hs (wp;-y™@Peeo) ) and
Cs = He(Uj, Mjllo)) @ Hy (U)), C1,C2). B returns
the corresponding M; if such a tuple exists.
Otherwise, outputs L.

Challenge Phase: A7z outputs ID* and My, M; on
which it wishes to be challenged. B runs the simulation
algorithm for public key request taking ID* as input to
get (ID*, (U*, wh, w}, d}) , zi, coin). Then B performs as
follows:

1) If coin =0, B aborts the game.
2)  Otherwise, B performs the following actions:

e B picks o* er {0,1}%, B er {0,1} and
Cs. Cs eg {0, 1}k,

o Bsets C; = g ¢ = Hi(ID*,w}), b =
H3(Mg, o*, ID*, U*),c = HyU*), Hswy -
¥ = C; & Mgllo™) & ¢ and He(U||
(Mgllo™) & cl|CTIIC5) = C3.

o Boutputs (C}, C5, C3) as the challenge cipher-
text. According to the above construction,
C; = (Mglio™) @ Ha(U™) @ Hs (wyl - yf1") =

(Mgllo*) @ Ha(g™) @ Hs (w;;b .yez;b)

Phase 2: B continues to respond to Azz’s requests in
the same way as it did in Phase 1. Azz cannot make a
Private Key Extraction queries on ID*. For ID*, if any
decryption query is equal to the challenge ciphertext
(C1, G5, C3), then B aborts.

Guess: Eventually, A7z outputs its guess. B chooses
a random pair (A,h) from the Hy list and outputs
U (= g™) as the solution to the CDH problem.

Analysis. First of all, we evaluate the simulation of
the random oracles given above. It is evident that the
simulations of Hy and H; are perfect through the con-
structions of Hy and Hj. Moreover, as long as A7z does
not query (Mg, o*, ID*, U*) to Hz nor U* to Hy nor
wil -y to Hs nor U*||(Mgllo™) @ c||Ci[|C} to He, the
simulations of H3, Hs, Hs and Hg are perfect.

Let AskH; denote the event that (Mg, o*, ID*, U*) has
been queried to H3, AskH} denote the event that U* has
been queried to Hy, AskH? denote the event that w(’;b -yegh
has been queried to Hs and AskH{ denote the event that
U*||(Mgllo*) @ c||C]|IC; has been queried to Hs.



SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS

SEM-keys
(Encrypt)

Epi_ o
Data PK, 0 (K) (M)

Owner

Encrypted
Storage

Get KGC-keys
of users

(SEM Decrypt)
D, PK.KGO)

@ K, M

sk, U-key

sk, Ukey
—_—

M

@ (user decrypt)

M

Fig. 4. The overall system.

The simulated challenge ciphertext is identically
distributed as the real one, because Hj, Hy4, Hs and
Hg are random oracles. Now we evaluate the simu-
lation of the decryption oracle. As to the simulation
of decryption oracle, B will wrongly reject a valid
ciphertext during the simulation with probability

smaller than 257%Pu  That is, Pr[DecErr] < M,
where DecErr denotes the event that B rejects a
valid ciphertext during the simulation. Let E =
(AskH} v AskH: v AskHj v AskHj \/ DecErr) |=Abort.

If E does not happen during the simulation, B will
not gain any advantage greater than 1/2 to guess
B, because of the randomness of the output of Hy.
In other words, Pr[8’ = B|—=E] < 1/2. We obtain
Pr[p" = B] = Pr[p’ = B|=EIPr[-E] + Pr[p’ = B|EIPr[E] =
%Pr[—-E] + Pr[E] = % + %Pr[E] By definition of

€, we have ¢ < 2 Pr[ﬁ/:ﬂ]—% < Pr[E] <

Pr[AskH} |+Pr[ AskHz |+Pr[ AskHj |+ Pr[ AskH3 |+Pr[DecErr] Th
Pr[~Abort] : €
probability that B does not abort during the simulation

is given by y%(1 — y). This probability is maximized at
y=1- ’Wﬁ' Therefore, we have Pr[—Abort] >

where e denotes the base of the natural logarithm. Hence,
we obtain the following Pr[AskHj] > ePr[—Abort] —
Pr{AskH] — Pr[AskHz]—Pr[AskHj] — Pr[DecErr]

€ g6 95 43  qps +qpy

= e(@pri+1) 2k 2k 2k q

If AskHj happens, then A7z will be able to distin-
guish the simulation from the real one. A7z can tell that
the challenge ciphertext C* is invalid. Hs(U*") has been
recorded on the Hy list. Then, B wins if it chooses the
correct element from the Hy list. Therefore, we obtain
the advantage for B to solve the CDH problem. ¢ >

+
q%PT[ASkHZ] 96 95 93 9Ds TDy

> 1 (; _______

= g4 \e@pitD ko 2k ko q
The running time of the B who is the CDH attacker is

bounded by T < t+ (g1 + g2 + 93 + 94 + 95 + 96)O(1) +

(@pub + gDs + D) (Atexp + O(1)), where fy, denotes the

time for computing exponentiation in Z;. OJ

3 SECURE CLOUD STORAGE

In this section we provide a detailed description of our
system for privacy preserving cloud storage using our
mCL-PKE scheme.

As shown in Fig. 4, our scheme consists of three enti-
ties: data owner, cloud, and users. The data owner possesses

2115

sensitive content that it wants to share with authorized
users by storing it in the public cloud and requesting
the cloud to partially decrypt the encrypted content when
users request the data. The cloud consists of three main
services: an encrypted content storage; a key generation
center (KGC), which generates public/private key pairs for
each user as explained in Section 2; and a security medi-
ation server (SEM), which acts as a security mediator for
each data request and partially decrypts encrypted data for
authorized users. The cloud is trusted to perform the secu-
rity mediation service and key generation correctly, but it
is not trusted for the confidentiality of the content and key
escrowing. Our approach allows one to have most of the
key generation and management functionality deployed in
the untrusted cloud as our mCL-PKE scheme does not have
the problem of key escrowing and thus the KGC is unable
to learn the full private keys of users.

Our scheme consists of four phases: (1) Cloud set up; (2)
User registration; (3) Data encryption and uploading and
(4) Data decryption. Now we describe each of these phases
in detail.

3.1 Cloud Set Up

The KGC in the cloud runs the SetUp operation of the
mCL-PKE scheme and generates the master key MK and
the system parameters params. It should be noted that this
setup operation is a one-time task.

3.2 User Registration

Each user first generates its own private and public key
pair, called SK and PK, using the SetPrivateKey and
SetPublicKey operations respectively using our mCL-PKE
scheme. The user then sends its public keys and its identity
(ID) to the KGC in the cloud. The KGC in turn generates
two partial keys and a public key for the user. One par-
tial key, referred to as SEM-key, is stored at the SEM in the
cloud. The other partial key, referred to as U-key, is given to
the user. The public key, referred to as KGC-key, consists of
the user generated public key as well as the KGC generated
public key. The KGC-key is used to encrypt data. The SEM-
key, U-key, and SK are used together to decrypt encrypted
data. We denote the partial private key and the public key
for user; as SEM-key;, U-key;, KGC-key; respectively.

3.3 Data Encryption and Uploading

The data owner obtains the KGC-keys of users from the
KGC in the cloud. The data owner then symmetrically
encrypts each data item for which the same access con-
trol policy applies using a random session key K and then
the data owner encrypts K using the KGC-keys of users.
The encrypted data along with the access control list is
uploaded to the cloud. The encrypted content is stored in
the storage service in the cloud and the access control list,
signed by the data owner, is stored in the SEM in the cloud.

3.4 Data Retrieval and Decryption

When a user wants to read some data, it sends a request to
the SEM to obtain the partially decrypted data. The SEM
first checks if the user is in the access control list and if the



2116

user’s KGC-key encrypted content is available in the cloud
storage. If the verification is successful, the SEM retrieves
the encrypted content from the cloud and partially decrypts
the content using the SEM-key for the user. The partial
decryption at the SEM reduces the load on users. The user
uses its SK and U-key to fully decrypt the data.

In order to improve the efficiency of the system, once the
initial partial decryption for each user is performed, the SEM
stores back the partially decrypted data in the cloud storage.

If a user is revoked, the data owner updates the access
control list at the SEM so that future access requests by the
user are denied. If a new user is added to the system, the
data owner encrypts the data using the public key of the
user and uploads the encrypted data along with the updated
access control list to the cloud. Note that existing users are
not affected by revoking or adding users to the system.

4 IMPROVED SECURE CLOUD STORAGE

In our basic scheme, the data owner has to encrypt the
same data encryption key multiple times for each autho-
rized user. This can be a huge bottleneck at the data owner
if many users are authorized to access the same data as
the number of mCL-PKE encryptions is proportional to the
number of authorized users. We provide an extension to our
basic mCL-PKE scheme so that the data owner encrypts the
data encryption key once for a data item and provides some
additional information to the cloud so that authorized users
can decrypt the content using their private keys. The idea
is similar to Proxy Re-Encryption (PRE) where the content
encrypted using the data owner’s public key is allowed to
be decrypted by different private keys after some transfor-
mation by the cloud which acts as the proxy. However, in
our improved scheme, the cloud simply acts as a storage
for the proxy keys, referred to as intermediate keys, and
gives these keys to users at the time of data requests.

Now we give the details of the extension. Let the data
owner’s private and public key pair be zp and Up = g*©
respectively, where g is a generator of Z; with order 4 and
zo is a random number in Z}. The following modifications
to the basic mCL-PKE scheme are performed to support
single encryption at the data owner per data item.

o Encrypt: Along with C; = g, where r is computed
as in the second step of Encrypt operation of the
basic mCL-PKE scheme, the data owner computes
the intermediate key INT-Key; for each authorized
user;, {g"%%|i=1,2,...,m} and gives the keys to the
cloud. Unlike the typical PRE schemes, the transfor-
mation at the cloud does not utilize the intermediate
keys. The intermediate keys are given to authorized
users when they request for data.

o USER-Decrypt: A user; having INT-Key; (= g"*%)
can compute Up" using its private key, z;, as follows
and perform the decryption using this value and the
public key of the data owner.

(grzgz,-)l/zi — Uor.

Notice that the knowledge of Up" allows user; to
decrypt the message encrypted using the the data
owner’s public key following the steps in the User-
Decrypt operation in the basic mCL-PKE scheme.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

SEM-keys
(Encrypt)

(SN

Data Enio
Owner

Encrypted
Storage

SEM

Get KGC-keys
of users

sk;, U-key

Intermediate key

sk, U-key
M1 —
@ (user decrypt)

Fig. 5. The overall system with immediate keys.

Fig. 5 shows the overall system with the utilization of
intermediate keys. The phases in this approach are very
similar to those of the basic approach presented in Section 3
except for the following differences.

o During the data encryption and download phases,
the data owner downloads the public keys of users
to generate the intermediate keys as shown above.
Unlike the basic approach, the data owner encrypts
each data item only once using a random symmetric
key K and then mCL-PKE encrypts K using its pub-
lic key. The data owner uploads the encrypted data
along with the intermediate keys to the cloud. The
encrypted data is stored in the storage service in the
cloud and the intermediate keys are stored at the
SEM in the cloud.

e During the data retrieval and decryption phases,
upon successful authorization, the SEM partially
decrypts the data encrypted using the data owner’s
public key as input to the SEM-decryption operation
of the basic mCL-PKE scheme, and gives the partially
decrypted data along with the intermediate keys.
The intermediate keys along with private keys allow
users to fully decrypt the partially decrypted data
using User-Decrypt operation of the basic mCL-PKE
scheme.

5 EXPERIMENTAL RESULTS

In this section, we first present the experimental results
for our mCL-PKE scheme. We then compare the basic
approach with the improved approach. Finally we compare
our approach with Lei et al.’s scheme[16]. The experiments
were performed on a machine running 32 bits GNU Linux
kernel version 3.2.0-30 with an Intel®Core ™j5-2430 CPU
@ 240GHZ and 8 GBytes memory. Our prototype sys-
tem is implemented in C/C++. We use V. Shoup’s NTL
library [24] version 5.5.2 for big number calculation and
field arithmetic. The NTL library is compiled along with
the GMP library [12] in order to improve the performance
of computations involving large numbers. We construct the
hash function required for the mCL-PKE scheme based on
SHAL.

For the hash functions, we use SHA1 as the elemen-
tary operation. However, SHA1 can easily be replaced with
other cryptographic hash functions such as SHA2. The basic
idea of the hash function construction is as follows. Based



SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS

—— ol = 1024
—#—ql =512
=102

o 10 20 50 60 70

3 a0
Massage Length

Fig. 6. Basic encryption.

on the field of the hash function output, we break the input
into multiple blocks, and the block number is dynamically
adjusted. For each block, we execute SHA1, convert the
output into decimal numbers, say a1, ay, ..., a,. If the out-
put field is Zj;, then we compute (a1|laz||azl| - - - |lay) mod g,
where || denotes the concatenation operation, to get the
final result of the hash function. This operation is very effi-
cient even if other hash functions are used. According to
our experimental results, it takes less than 1 ms to do this
operation for a message of size 16KB.

Fig. 6 shows the time required to perform the encryption
operation in the mCL-PKE scheme for different message
sizes. Since our scheme does not use pairing operations,
it performs encryption efficiently. As can be seen from the
graph, the encryption time increases linearly as the mes-
sage size increases. As the bit length of g increases, the
cost increases non-linearly since the encryption algorithm
performs exponentiation operations. A similar observation
applies to the the SEM decryption and user decryption.

We also implemented the improved scheme where the
data owner performs only one encryption per data item
and creates a set of intermediate keys that allows autho-
rized users to decrypt the data, as described in Section 4.
In Fig. 7, we compare the time to perform encryption and
decryption in the basic scheme and the improved scheme as
the number of users who can access the same data increases
from 10 to 50. We fixed the length of g to 1,024 bits and
the message size to 16KB. It is evident from the graph that
as more users are allowed to access the same data item,
the better the improved scheme performs compared to the
basic scheme. The cost of the basic scheme is high since the
encryption algorithm is executed for each user.

Finally we implemented Lei ef al. [16]'s CL-PRE scheme
based on pairing. According to the results reported in their
paper, proxy-encryption takes 7-8ms to encrypt a message
with length 3K bits. We reimplemented their scheme using
the PBC-library [17]. Our implementation of their scheme
is actually more efficient and the time for encrypting a
message of 8K Bytes is about 3ms. We then compared
our scheme with their scheme for encryption. Even with
the improved implementation, as shown in Fig. 8, our
encryption algorithm is more efficient than their algorithm

—+— Basic Scheme SEM DEC.
—+— Improved Scheme SEM DEC|

sssssssss
—+— Improved Scheme EN

Fig. 7. Improved scheme.

2117

o 10 20 0 a

3 0 50 0 70
Massage Length

Fig. 8. Comparison of encryption.

for message sizes above 16K bytes. A similar observation is
made for the decryption algorithm, as shown in Fig. 9. This
observation is consistent with the fact that our scheme uses
an efficient hash function and XOR operations to perform
encryption and decryption whereas their scheme uses more
expensive constructs.

6 RELATED WORK

6.1 Security Mediated CL-PKE

In 2003, Al-Riyami and Paterson [2] introduced a
Certificateless Public Key Cryptography (CL-PKC). Since
each user holds a combination of KGC produced par-
tial private key and an additional user-chosen secret, the
key escrow problem can be resolved. As the structure of
CL-PKC guarantees the validity of the user’s public key
without the certificate, it removes the certificate manage-
ment problem. Since the advent of CL-PKC [2], many
CL-PKE schemes have been proposed based on bilinear
pairings. The computational cost required for pairing is still
considerably high compared to standard operations such
as modular exponentiation in finite fields. To improve effi-
ciency, Sun et al. [25] presented a strongly secure CL-PKE
without pairing operations. However, previous CL-PKE
schemes could not solve the key revocation problem. In
public key cryptography, we should consider scenarios
where some private keys are compromised. If the private
keys are compromised, then it is no longer secure to use
the corresponding public keys. To address this problem,
Boneh ef al. [6] proposed the concept of mediated cryptog-
raphy to support immediate revocation. The basic concept
of the mediated cryptography is to utilize a security medi-
ator (SEM) which can control security capabilities for every
transaction. Once the SEM is notified that a user’s public
key should be revoked, it can immediately stop the user’s
participation in a transaction. Chow et al. [9] introduced
the notion of security-mediated certificateless cryptogra-
phy and presented a mediated CL-PKE relying on pairing
operations. Yang et al. [26] first proposed a mediated CL-
PKE without pairings. Unfortunately, Yang et al.’s scheme
was found to be insecure against partial decryption attack,
since their security model did not consider the capabilities

o 10 20 50 50 70

30 a0
Massage Length

Fig. 9. Comparison of decryption.



2118

of the adversary in requesting partial decryptions. Thus, a
secure mediated CL-PKE without pairings is needed. Our
proposed pairing-free mediated CL-PKE scheme is secure
against the partial decryption attack.

6.2 Functional Encryption

Functional encryption allows one to encode an arbitrary
complex access control policy with the encrypted message.
The message can then be decrypted only by the users
satisfying the encoded policy. In predicate encryption with
public index, the policy under which the encryption is
performed is public. Unlike public key cryptosystems, the
public key is not a random string but some publicly known
values such as ID that bind to users. Attribute based
encryption (ABE) introduced by Sahai and Waters [22] is a
more expressive predicate encryption with a public index.
It can be considered as a generalization of IBE. In ABE,
the public keys of a user are described by a set of identity
attributes the user has. Key Policy ABE (KP-ABE) [13] and
Ciphertext Policy ABE (CP-ABE) [5] are two popular exten-
sions of ABE. An ABE based approach supports expressive
Access Control Policies (ACPS). However, such approach
suffers from some major drawbacks. Whenever the group
dynamic changes, the rekeying operation requires to update
the private keys given to existing members in order to pro-
vide backward/forward secrecy. Further, the ABE scheme
suffers from the key escrow problem. Predicate encryption
schemes without public index such as Anonymous IBE [1],
[14], Hidden Vector Encryption [7], and Inner product pred-
icate [15] preserve the privacy of the access control policies.
Even though they preserve the privacy of the policy, they
have limited expressibility compared to the former schemes
and also suffer from the same limitations as the former
schemes.

6.3 Symmetric Key Based Systems

In push-based approaches [4], [19] data items are encrypted
with different keys, which are provided to users at the
beginning. The encrypted data is then broadcast to all users.
However, such approaches require that all [4] or some [19]
keys be distributed in advance during user registration
phase. This requirement makes it difficult to assure forward
and backward key secrecy when user groups are dynamic
or the ACPS change. Further, the rekey process is not trans-
parent, thus shifting the burden of acquiring new keys to
users. Shang et al. [23] proposed an approach to solve such
problem. It lays the foundation to make rekey transparent
to users and protect the privacy of the users who access
the content. However, it does not support expressive access
control policies. In order to address such limitations, Nabeel
et al. [20] recently proposed a more expressive attribute
based group key management scheme that can be utilized
to support fine-grained encryption based access control to
data uploaded to public clouds. While such approaches
solve the key management problem and provide expres-
sive access control, they still suffer from the key escrow
problem.

6.4 Secure Cloud Storage
Some recent research efforts [8], [10] have been pro-
posed to build privacy preserving access control systems

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 2014

by combining oblivious transfer and anonymous creden-
tials. The goal of such work is similar to ours but we
identify the following limitations. Each transfer protocol
allows one to access only one record from the database,
whereas our approach does not have any limitation on
the number of records that can be accessed at once since
we separate the access control from the authorization. Yu
et al. [27] proposed an approach based on ABE utiliz-
ing PRE (Proxy Re-Encryption) to handle the revocation
problem of ABE. The approach still does not solve the
key escrow and revocation problems. Further, it is based
on pairing based cryptography whereas we avoid pairing
operations.

Recently, Lei et al. [16] proposed the CL-PRE
(Certificateless Proxy Re-Encryption) scheme for pub-
lic cloud computing environments. While Lei ef al’s
CL-PRE scheme solves the key escrow problem and
certificate management, it utilizes expensive pairing oper-
ations. Further, their scheme only achieves CPA (Chosen
Plaintext Attack) security which is not sufficient to protect
real-world applications. They do not establish a strong
security model with two types of adversaries. In CPA, the
ability of the adversary is limited to obtaining ciphertexts
of plaintexts of their choice. Therefore CPA is too weak
to be considered viable for real-world applications. In
contrast with Lei et al.’s scheme, our proposed scheme
achieves CCA (Chosen Ciphertext Attack) security. Under
CCA, the ability of an adversary is more powerful than
the ability of the adversary under CPA. In addition to the
public key, the adversary under CCA is given access to a
“decryption oracle" which decrypts arbitrary ciphertexts at
the adversary’s request, returning the plaintext. Moreover,
our scheme does not utilize bilinear pairings to improve
efficiency.

7 CONCLUSION

In this paper we have proposed the first mCL-PKE scheme
without pairing operations and provided its formal secu-
rity. Our mCL-PKE solves the key escrow problem and
revocation problem. Using the mCL-PKE scheme as a key
building block, we proposed an improved approach to
securely share sensitive data in public clouds. Our approach
supports immediate revocation and assures the confiden-
tiality of the data stored in an untrusted public cloud
while enforcing the access control policies of the data
owner. Our experimental results show the efficiency of basic
mCL-PKE scheme and improved approach for the public
cloud. Further, for multiple users satisfying the same access
control policies, our improved approach performs only a
single encryption of each data item and reduces the overall
overhead at the data owner.

REFERENCES

[1] M. Abdalla et al., “Searchable encryption revisited: Consistency
properties, relation to anonymousibe, and extensions,” J. Cryptol.,
vol. 21, no. 3, pp. 350-391, Mar. 2008.

[2] S. Al-Riyami and K. Paterson, “Certificateless public key cryptog-
raphy,” in Proc. ASIACRYPT 2003, C.-S. Laih, Ed. Berlin, Germany:
Springer, LNCS 2894, pp. 452-473.



SEO ET AL.: AN EFFICIENT CERTIFICATELESS ENCRYPTION FOR SECURE DATA SHARING IN PUBLIC CLOUDS

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations
among notions of security for public-key encryption schemes,”
in Proc. Crypto ‘98, H. Krawczyk Ed. Springer-Verlag, LNCS
1462.

[4] E. Bertino and E. Ferrari. “Secure and selective dissemination of
XML documents,” ACM TISSEC, vol. 5, no. 3, pp. 290-331, 2002.

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proc. 2007 IEEE Symp. SP,
Taormina, Italy, pp. 321-334.

[6] D. Boneh, X. Ding, and G. Tsudik, “Fine-grained control of
security capabilities,” ACM Trans. Internet Technol., vol. 4, no. 1,
pp- 60-82, Feb. 2004.

[7] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proc. 4th TCC, Amsterdam, The
Netherlands, 2007, pp. 535-554.

[8] J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious trans-
fer with access control,” in Proc. 16th ACM Conf. CCS, New York,
NY, USA, 2009, pp. 131-140.

[9] S. S. M. Chow, C. Boyd, and J. M. G. Nieto, “Security-
mediated certificateless cryptography,” in Proc. 9th Int.
Conf. Theory Practice PKC, New York, NY, USA, 2006,
pp- 508-524.

[10] S. Coull, M. Green, and S. Hohenberger, “Controlling access to
an oblivious database using stateful anonymous credentials,” in
Irvine: Proc. 12th Int. Conf. Practice and Theory in PKC, Chicago, IL,
USA, 2009, pp. 501-520.

[11] I. Dropbox. Dropbox [Online]. Available:
https:/ /www.dropbox.com/

[12] The gnu multiple precision arithmetic library [Online]. Available:
http://gmplib.org/

[13] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in Proc. 13th ACM Conf. CCS, New York, NY, USA, 2006,

p- 89-98.

[14] C.Gu, Y. Zhu, and H. Pan, “Information security and cryptology,”
in 4th Int. Conf. Inscrypt, Beijing, China, 2008, pp. 372-383.

[15] J. Katz, A. Sahai, and B. Waters, “Predicate encryption

supporting disjunctions, polynomial equations, and inner
products,” in Proc. EUROCRYPT, Berlin, Germany, 2008.
pp- 146-162.

[16] X. W. Lei Xu and X. Zhang, “CL-PKE: A certificateless proxy re-
encryption scheme for secure data sharing with public cloud,” in
ACM Symp. Inform. Comput. Commun. Security, 2012.

[17]1 B. Lynn. Pairing-based  cryptography [Online].  Available:
http:/ /crypto.stanford.edu/pbc
[18] Microsoft Co. Ltd. Microsoft skydrive [Online]. Available:

https:/ /skydrive.live.com/

[19] G. Miklau and D. Suciu, “Controlling access to published data
using cryptography,” in Proc. 29th Int. Conf. VLDB, Berlin,
Germany, 2003, pp. 898-909.

[20] M. Nabeel, N. Shang, and E. Bertino, “Privacy preserving policy
based content sharing in public clouds,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 11, pp. 26022614, Sept. 2012.

[21] D. Pointcheval and ]. Stern, “Security arguments for digital
signatures and blind signatures,” J. Cryptology, vol. 13, no. 3,
pp- 361-396, 2000.

[22] A.Sahai and B. Waters, “Fuzzy identity-based encryption,” LNCS
3494 in Proc. EUROCRYPT, Aarhus, Denmark, 2005, pp. 457-473.

[23] N. Shang, M. Nabeel, F. Paci, and E. Bertino,“A privacy-
preserving approach to policy-based content dissemination,” in
Proc. 2010 IEEE 26th ICDE, Long Beach, CA, USA, pp. 944-955.

[24] V. Shoup. NTL library for doing number theory [Online]. Available:
http:/ /www.shoup.net/ntl/.

[25] Y. Sun, F. Zhang, and J. Baek, “Strongly secure certificateless pub-
lic key encryption without pairing,” in Proc. 6th Int. Conf. CANS,
Singapore, 2007, pp. 194-208.

[26] C. Yang, E. Wang, and X. Wang,“Efficient mediated certificates
public key encryption scheme without pairings,” in AINAW,
Niagara Falls, ON, May. 2007, pp. 109-112.

[27] S.Yu, C. Wang, K. Ren, and W. Lou,”Attribute based data sharing
with attribute revocation,” in Proc. 5th ASIACCS, New York, NY,
USA, 2010, pp. 261-270.

2119

Seung-Hyun Seo is a Post-Doctoral Researcher
of computer science at Purdue University since
2012 and has been a Senior Researcher at
KISA (Korea Internet and Security Agency)
since 2010. Before joining KISA, she was a
Researcher for 3 years with FSA (Financial
Security Agency), Korea. She received the BS,
MS, and PhD degrees from Ewha Womans
University, Korea in 2000, 2002, and 20086,
respectively. Her current research interests
include cryptography, mobile security, secure

cloud computing, and malicious code analysis. She is a member of the
IEEE.

Mohamed Nabeel is a Post-Doctoral
Researcher of computer science at Purdue
University and a Fulbright Alumnus from Sri
Lanka. He received the PhD degree in 2012
from Purdue University. His current research
interests include distributed systems security
and applied cryptography. He is a member of the
IEEE.

Xiaoyu Ding is a PhD candidate in the
Department of Computer Science, Purdue
University, West Lafayette, IN, USA. He received
the BE degree from Wuhan University, China in
2011. He joined the Department of Computer
Science at Purdue University in 2011. His cur-
rent research interests include cryptography and
access control. He is a student member of the
IEEE.

Elisa Bertino is a Professor of computer science
at Purdue University and serves as Director of
Purdue Cyber Center (Discovery Park) and as
Research Director of CERIAS. Previously, she
was a Faculty Member with the Department of
Computer Science and Communication in the
University of Milan. Her current research inter-
ests include security, privacy, digital identity man-
agement systems, database systems, distributed
systems, and multimedia systems. She is a fel-
low of the IEEE and ACM. She received the
2002 |IEEE Computer Society Technical Achievement Award for out-
standing contributions to database systems and database security and
advanced data management systems and the 2005 IEEE Computer
Society Tsutomu Kanai Award for pioneering and innovative research
contributions to secure distributed systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


