
2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

1

Scalable architecture for multi-user encrypted
SQL operations on cloud database services

Luca Ferretti, Fabio Pierazzi, Michele Colajanni, and Mirco Marchetti

Abstract—The success of the cloud database paradigm is strictly related to strong guarantees in terms of service availability,

scalability and security, but also of data confidentiality. Any cloud provider assures the security and availability of its platform, while

the implementation of scalable solutions to guarantee confidentiality of the information stored in cloud databases is an open problem

left to the tenant. Existing solutions address some preliminary issues through SQL operations on encrypted data. We propose the first

complete architecture that combines data encryption, key management, authentication and authorization solutions, and that addresses

the issues related to typical threat scenarios for cloud database services. Formal models describe the proposed solutions for enforcing

access control and for guaranteeing confidentiality of data and metadata. Experimental evaluations based on standard benchmarks

and real Internet scenarios show that the proposed architecture satisfies also scalability and performance requirements.

Index Terms—Database, Confidentiality, Encryption, Access Control

✦

1 INTRODUCTION

The diffusion of cloud database services is being hin-
dered by the perception of confidentiality risks when
we store our information in cloud infrastructures [1].
Cryptographic solutions address this issue in the con-
text of file storage when there is no need to perform
computations over encrypted data. We aim, instead,
to guarantee data confidentiality and data isolation for
cloud databases that represent an open research area.
There are three main related issues behind these two
problems: execution of SQL operators over encrypted
data; enforcement of access control mechanisms through
selective encryption strategies; design of architectures
not penalizing the performance and scalability that are
typical of cloud-based services [2]. Existing proposals of-
fer partial and separate solutions to data confidentiality
and isolation. For example, architectures supporting SQL
operations on encrypted data leave access control to the
cloud provider [3] or enforce it through an intermediate
trusted server [4]. Other proposed architectures solve the
problem of access control without the intervention of the
cloud provider, but they do not allow execution of SQL
operations on encrypted data (e.g., [5]–[7]).

We propose the first architecture, called Multi-User
relaTional Encrypted DataBase (MuteDB), that guarantees
data confidentiality by executing SQL operations on
encrypted data and by enforcing access control policies
through selective encryption methods. By combining
these two approaches MuteDB is the only solution en-
suring confidentiality of data stored in the cloud even
in the worst threat scenario where legitimate database
users collude with cloud provider employees. This result
is achieved through an innovative model that translates

‚ University of Modena and Reggio Emilia. E-mail:
{luca.ferretti,fabio.pierazzi,michele.colajanni,mirco.marchetti}@unimore.it

access control policies related to a plaintext database into
selective encryption strategies that are applied to the
corresponding encrypted database. Our solution works
even in dynamic scenarios, in which users and access
control policies change over time, without the need to
renew and redistribute user credentials. The proposed
architecture is specifically designed for cloud database
scenarios where multiple users can access the cloud
database through the Internet possibly from different
geographical areas. Special attention in the architectural
design is devoted to guarantee the same availability and
scalability of a plaintext cloud database. For this reason,
MuteDB does not rely on any intermediate trusted server
that could become a system bottleneck and a single point
of failure. Moreover, it adopts innovative solutions for
guaranteeing efficient retrieval of database metadata that
are stored in an encrypted form in the cloud database.

We can consider MuteDB as the first architecture that
allows enterprises to leverage cloud database services
while achieving the same confidentiality guarantees of a
traditional in-house database and the same scalability of
a cloud database service.

The performance and scalability of MuteDB are evalu-
ated through a prototype that is subject to different query
workloads based on standard (TPC-C) and recently
proposed (YCSB) database benchmarks. We highlight
that, as a further contribution, this paper reports the
first performance evaluation studies related to encrypted
cloud database services in real distributed environments
where the clients are geographically distributed over the
PlanetLab platform [8]. Experimental results show that
MuteDB does not affect the scalability of the original
cloud service, and its performance for geographically
distributed clients are comparable to those of unen-
crypted cloud database services.

The remaining part of this paper is organized as
following. Section 2 describes the main threats affecting

IEEE TRANSACTIONS ON CLOUD COMPUTING VOL: PP NO: 99 YEAR 2014IEEE TRANSACTIONS ON CLOUD COMPUTING VOL:PP NO:99 YEAR 2014

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

2

a cloud database service and that are addressed by our
solution. Section 3 outlines the main features of the Mut-
eDB architecture. Section 4 describes the novel encryp-
tion and access control enforcement schemes for guar-
anteeing data isolation. Section 5 describes the methods
for managing encrypted metadata that are stored in the
cloud database. Section 6 details the fundamental opera-
tions of MuteDB for SQL query execution and privilege
management. Section 7 presents the experimental results
obtained in a geographically distributed environment.
Section 8 discusses related work. Section 9 summarizes
the main conclusions and future work.

2 THREAT MODEL

We propose an architecture guaranteeing confidentiality
and isolation of data stored in cloud database infrastruc-
tures that are subject to two types of threats: those related
to specific roles, and those deriving by the collusion of
these roles. The literature focuses on the former threats,
while our proposal aims to respond to both classes.

Typical threat models in literature identify the possible
issues related to four roles: the tenant Database Ad-
ministrator (DBA), the tenant database users, the cloud
provider employees, and people external to tenant’s and
provider’s organizations. We describe our assumptions
based on the four roles and then we consider collusion.

The DBA is the only role that has access to all tenant
data. He is in charge of installing and configuring the
database, implementing the access control policies and
managing the users credentials. As in related literature,
our threat model assumes that the DBA is trusted. Pos-
sible measures to verify the loyalty of the DBA, such as
hashed logging, continuous monitoring and supervision,
are outside the scope of this paper.

External attackers have no legitimate access to the
infrastructure and data of the tenant organization nor to
those of the cloud provider. They can try to access tenant
information through several types of attack: by eaves-
dropping data in motion between the tenant clients and
the cloud servers, by compromising the cloud servers
and/or the tenant clients.

The cloud insiders are employees of the cloud provider
that have access to the cloud infrastructure hosting the
database service of the tenant organization. Their behav-
ior is honest but curious [9], that is, they may be interested
in accessing tenant data, but they do not modify or
delete them. This assumption is considered realistic in all
related literature [3]–[5], [10] and the motivation should
be clear. While reading data would remain unnoticed by
a tenant, the detection of any data modification would
penalize the trust and reputation of the cloud provider
in the eyes of all of its customers.

Tenant insiders refer to database users having legiti-
mate access to a subset of the tenant data stored in the
cloud database. The portion of accessible data is defined
by the access control policies of the tenant organization.

Tenant insiders may try to gain access to more informa-
tion by escalating their privileges through a violation of
the access control policies.

Guaranteeing data confidentiality in the cloud against
external attackers, cloud insiders, and tenant insiders
under the assumption that they do not collude can be
achieved through some combinations of existing solu-
tions. For example, best practices in the field of au-
thentication and secure communication protocols hinder
external attacks. Recent SQL-aware cryptographic strate-
gies [3], [4] allow a tenant to store encrypted data thus
preventing cloud insiders and external attackers from
reading tenant data. Standard database access control
mechanisms, such as privilege GRANTS and reference
monitors [11], limit the operations of tenant insiders
within their legitimate authorizations. Existing access
control mechanisms at the database engine side guaran-
tee confidentiality and isolation in traditional in-house
deployments where the infrastructure is managed by
trusted personnel, but they do not work as well for
cloud database services because they do not consider
the main threats posed by a collusion between a cloud
and a tenant insiders when data are encrypted through
a global master key.

In a cloud database scenario, the malicious operations
of a tenant insider are limited by access control policies,
but these policies cannot prevent the possibility that
a tenant insider discloses its credentials including its
decryption key(s) to a cloud insider. The latter, that has
access to all the encrypted data and can bypass the access
control policies enforced at the cloud side, can violate the
confidentiality of the entire database by means of the
key(s) received by the tenant insider. A second collusion
scenario may happen if a cloud insider delivers some
encrypted data to a tenant insider that is not authorized
to access them. In this scenario the tenant insider can
leverage its credentials to decrypt all encrypted data,
thus violating the tenant access control policies.

Let us anticipate a summary of the design choices
and novel solutions that allow MuteDB to protect data
against external attackers, cloud insiders and tenant in-
siders, and against collusion between these roles. Ex-
ternal attackers that eavesdrop network traffic cannot
access any plaintext information because SQL operations
issued to the cloud database are protected by using
standard encryption protocols (e.g., SSL). Cloud insiders
and external attackers that have breached the cloud
servers cannot access confidential information, because
MuteDB encrypts tenant data with SQL-aware encryp-
tion algorithms and the cloud provider never obtains
the decryption keys. Tenant insiders cannot perform
privilege escalation attacks on the encrypted database
thanks to a novel scheme that translates and enforces
the database access control policies defined by the tenant
DBA on the plaintext database to the encrypted one.
Even in the worst case of a collusion between tenant
and cloud insiders, the proposed solution limits the data
leakage to the amount of information that is accessible to

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

3

the colluding tenant insider, because MuteDB does not
delegate the enforcement of access control policies to the
cloud provider.

3 ARCHITECTURE

In this section we outline the main solutions adopted in
the MuteDB architecture that guarantee data isolation
and confidentiality on any relational cloud database
service rented by a tenant organization. The solutions
and operational details are described in the following
three sections.

In Fig. 1 we evidence a tenant organization in which
a trusted DBA machine hosts the MuteDB DBA client,
that is the application for the creation and management
of the encrypted database. All tenant database users can
issue SQL operations directly to the cloud database even
from geographically distributed locations by executing
a MuteDB client on their machines. The entire set of
tenant data are stored in an encrypted form in the cloud
database. Thanks to the use of SQL-aware encryption
strategies, the cloud database engine can execute queries
on encrypted data without accessing any decryption
keys. Even metadata that are necessary to manage encryp-
tion strategies are considered critical information, hence
MuteDB stores them encrypted in the cloud database:
the DBA and the tenant users can efficiently retrieve
metadata through standard SQL queries. We refer to
the encrypted forms of tenant data and metadata as
encrypted tenant data and encrypted metadata, respectively.

Fig. 1: Architecture of MuteDB.

Unlike existing proposals, MuteDB does not use any
trusted intermediate proxy [4] and key distribution
server [7], nor it stores large amounts of cryptographic
information and metadata in the client machines [12]. We
assume that the DBA is the only subject that owns root
credentials for the DBA client, and that no internal nor
external attackers are able to access, steal or crack the cre-
dentials. The DBA manages user accounts, and enforces

the tenant access control policies. These policies represent
the set of rules adopted by the tenant organization to de-
fine which user can access to which subset of tenant data.
The importance of data isolation through access control
policies should be clear: the tenant users must access
all and only authorized data where authorizations are
specified as if the database was maintained by the tenant.
On the other hand, the mechanisms for implementing
access control policies are complicated by the cloud
database service scenario. MuteDB offers the following
original solutions. Each user is provided with a set
of user credentials including all information that allows
him/her to access all and only the legitimate data. The
encrypted data cannot maintain the same structure of the
plaintext version, and the wide literature on enforcing
access control policies on relational databases (e.g., [11],
[13]) does not propose how to extend these policies on
SQL-aware encrypted cloud databases. Hence, to the best
of our knowledge, this paper is the first addressing the
issue of transforming authorization rules expressed on a
plaintext database into rules enforced in the SQL-aware
encrypted database.

The access control matrix is the most common solution
for describing discretionary access control policies [7],
[14], [15]. Each row is associated with a database user
and each column is associated with a structure (e.g., col-
umn, table, database) that is defined as a subset of tenant
data on which it is possible to apply an authorization rule.
Each cell of the access control matrix defines whether a
user can or cannot access the corresponding structure.
For example, the access control matrix in Fig. 1 denotes
that user 1 and user 2 are allowed to access the structure
A, and the structures B and C, respectively. We propose
an original model that maps the 1:1 correspondence
between the sets of plaintext data and the encrypted data
on which the tenant access control policies are defined.
For example, in Fig. 1 MuteDB maps plaintext tenant
data A, B, and C into encrypted tenant data α, β, and
γ, respectively. The access control policies are satisfied
by enforcing any authorization rule expressed over a
plaintext structure on the corresponding access group
(e.g., A and α). The details of our model and solution
are described in Section 4.3.

A similar solution works for a database stored in-
house, but it does not guarantee the confidentiality of
data stored in the cloud because a cloud insider can
access the storage devices. Hence, MuteDB enforces
the access control policies through selective encryption
strategies. Selective encryption requires the encryption of
data through multiple encryption keys at a granularity
that depends on the reference access control model. Since
our target is a discretionary access control model that
is expressed over database structures, we use a differ-
ent encryption key for each structure of the encrypted
database. Each user credentials include small crypto-
graphic information consisting of a unique secret key
that allows him/her to calculate the database decryption
keys through derivation algorithms (e.g., [16], [17]). This

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

4

choice avoids the generation and distribution of new
credentials even if the access control policies change
(Section 6). We note that our proposal can be combined
with symmetric or asymmetric SQL-aware encryption
algorithms; moreover, the derivation scheme is designed
to fit symmetric, private or public keys of different
lengths.

We conclude this section by describing the main op-
erations required to create and access the encrypted
cloud database. The DBA is in charge of translating
the access control policies into an access control matrix
used by MuteDB. The DBA client takes as its input the
original plaintext database, and produces the encrypted
tenant data. The structures of the plain database are
mapped to access groups within the encrypted tenant
data. In the example of Fig. 1, the structure A is mapped
to the encrypted access group α. Moreover, the DBA
client produces metadata that are encrypted and then
stored in the cloud database. The DBA distributes unique
secret keys to the users at the creation of their accounts
according to the access control matrix. These keys enable
the users to access (decrypt) all and only the subsets of
encrypted tenant data corresponding to the structures on
which the users have legitimate access. In the example of
Fig. 1, the user 2 credentials can only be used to decrypt
data included in the access groups β and γ. Each user
can execute SQL operations through the MuteDB client
installed on his/her client machine. The client takes as its
inputs the user credentials and the encrypted metadata
stored in the cloud database, and translates plaintext
SQL operations into encrypted SQL operations that can
be executed on encrypted data. MuteDB guarantees the
isolation of the tenant data and protects also the names
of the database structures by enforcing access control on
all these sets of information. This solution avoids that a
cloud insider infers some information about the content
of the database by knowing the names of the tenant
database structures. Our choice of subjecting structure
names to access control enforcement guarantees data
isolation and confidentiality but it complicates the man-
agement of encrypted queries and metadata retrieval.
The detailed solutions of MuteDB for access control
through encryption and for metadata management are
described in Section 4 and Section 5, respectively.

4 ACCESS CONTROL AND DATA ENCRYPTION

We now introduce the MuteDB models and schemes for
combining encryption and key management to support
data confidentiality and isolation in cloud databases.
After the presentation of the models related to access
control in plaintext (Section 4.1) and encrypted (Sec-
tion 4.2) databases, we describe how MuteDB transforms
an access control matrix for the plaintext model to a
matrix suitable for the encrypted database (Section 4.3),
and how it generates user credentials (Section 4.4).

Let R be the set of resources that represent plaintext
tenant data, S the set of plaintext database structures, E

the set of encrypted tenant data, U the set of users, and
K the set of encryption keys. We define A as the access
control matrix where, for each user u P U and for each
structure s P S , there exists a binary authorization rule
a P A that defines whether an access to s by u is denied
(au,s “ 0) or allowed (au,s “ 1).

The user u capability list capu denotes the set of
structures accessible to u. We assume the existence of
a decryption function D : E ˆ K ÞÝÑ R such that for
each encrypted resource e P E , there exists a key k P K

that allows us to calculate r “ Dpk, eq, where r P R.
For the sake of simplicity, we define er P E and kr P K

as the encrypted resource and the decryption key for
the resource r P R, that is, r “ Dpkr, erq. For each user
u P U , we define the keyring Ku Ď K as the set of all
the decryption keys known by u, and the user accessible
resources Ru as the set of all and only resources that u is
able to decrypt through the keys included in Ku. The
idea is that an encryption scheme can enforce tenant
access control policies if the users keyrings include the
keys that decrypt all and only the resources belonging
to their capability lists [5].

4.1 Plaintext database model

We model the plaintext database through the following
triple:

P :“ pS,ą,Rq (1)

where pS,ąq is the partially ordered set (poset) of the
database structures, and R is the set of resources repre-
senting the tenant data. Each element s P S is a structure
of the database (e.g., a table, a column), and the ordering
operator x ą y (x, y P S) denotes that x is an ancestor
of y, and y is a descendant of x. If a third structure
z P S : x ą z ą y does not exist, then we use the notation
x Í y, where x is a parent node of y, and y is a child node
of x. We remark that a parent (child) is also an ancestor
(descendant), while the opposite is not true. All inclusion
relations between the database structures are represented
as parent-child relations in the poset (e.g., the column c

of the table t is represented by t Í c). Each element
r P R is the set of all information stored in a column
of the database. If we model the structure poset as a
hierarchical tree, there is a 1:1 correspondence between
each resource r P R and each leaf of the poset tree. As
an example, we refer to Fig. 2 that represents the model
of a plaintext database schema (s1) containing two tables
(s2, s3), each consisting of two columns (s4, s5, and s6,
s7). The columns denote the leafs of the poset tree. The
set of data stored in each column is represented as a
resource, that is, r1 represents the actual data stored in
the column s4. The labels associated with the structures
are the actual names of the database structures that are
concatenated to the absolute path from the root of the
structure poset. For example, the label of the structure
s4 is denoted by ‘db.t1.c1’.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

5

Fig. 2: The poset representing a plaintext database.

The proposed plaintext database model is a poset that
extends the structure poset pS,ąq with the resources R:
a structure s P S associated with a resource r P R is a
parent of the resource r (s Í r); all structures s‹ P S that
are ancestors of s (s‹

ą s) are also ancestors of r (s‹
ą r).

We model the access control rules on the plaintext
database through the triple pU ,S,Aq, where U is the
set of users, S is the set of structures, and A is the
access matrix [15]. An authorization rule on a structure
also grants an access to all descendant structures and
resources. For example, the rule au1,s3 “ 1 authorizes
u1 to access s3 and all its descendant structures and
resources, that is, s6, s7, r3, and r4.

4.2 Encrypted database model

Assuming that a tenant organization owns a plaintext
relational database, the first goal is to preserve the con-
fidentiality of the tenant data and even of the database
structures because also the table and the column names
may leak some information about tenant data. To these
purposes, we encrypt tenant data through SQL-aware
cryptographic schemes that allow SQL operations on
encrypted data: different algorithms support different
subsets of SQL operators.

Encrypted data are contained in encrypted tables
stored in cloud database servers. For each plaintext table,
the MuteDB DBA client generates the corresponding en-
crypted table and a unique encryption key. The name of
the encrypted table is computed by encrypting the name
of the plaintext table through that key. The encryption
algorithm used for encrypting the table names is a stan-
dard AES algorithm in a deterministic mode (e.g., CBC
with constant initialization vector). In such a way, only
the users that know the plaintext table name and the
corresponding encryption key are able to compute the
name of the encrypted table. The deterministic scheme
is preferred because it allows a 1:1 correspondence be-
tween plaintext and encrypted tables and improves the
efficiency of the query translation process (see Section 6).

As a plaintext database column could correspond to
multiple encrypted columns, MuteDB does not straight-
forwardly encrypt its name. Instead, the name of each
encrypted column is computed by encrypting the con-
catenation of the names of the plaintext column and of

the encryption algorithm through the standard deter-
ministic AES function using the encryption key associ-
ated with the plaintext column.

We model the encrypted database through the set E,
that is an extension of the plaintext database model P

(see Equation (1)):

E :“ pS,ą,R,G,V,Φ,K, E , T , θ,Γq (2)

where:

‚ pS,ą,Rq is the poset that represents structures and
resources belonging to the database, as modeled in
the previous section;

‚ G is the set of the access groups, where each g P G is
a set of structures Sg Ď S ;

‚ V is the set of derivation keys that are used to com-
pute resource keys; each access group has exactly
one derivation key, hence a user u that owns an
authorization for the access group g is able to obtain
the derivation key vg P V associated with g;

‚ Φ is the set of the SQL-aware encryption algorithms
used to encrypt the resources R;

‚ K is the set of resource keys used to encrypt plain-
text resources;

‚ E is the set of encryption groups, where each group
e P E denotes a set of resources Re Ď R that are
encrypted through the same encryption key ke and
the same SQL-aware encryption algorithm φ P Φ;

‚ T is the set of tokens; each token t P T is a
public value that is used to compute derivation and
resource keys;

‚ θ is a derivation function that allows the computation
of derivation keys; it is defined as:

θ : V ˆ G ˆ T ÞÝÑ V (3)

@pa, bq P G ˆ G : a Í b ñ D! t : θpva, b, tq “ vb (4)

An implementation example of derivation function
is proposed in [16].

‚ Γ is a function that allows the computation of
resource keys for all the resources descending from
structures included in an access group, and that is
defined as:

Γ : V ˆ G ˆ Φ
n ÞÝÑ Sn ˆ Kn (5)

@pa,ΦBq, a P G, B :“ tb P E : b Ì au

ñ Γpva, a,ΦBq “ tpc, kbq : b P B, c P S, c Í bu (6)

An implementation case using the AES algorithm
and metadata is proposed in Section 5.

Let us explain the proposed model by referring to
the example of the encrypted database shown in Fig. 3,
where the encrypted database structures (s1, . . . , s10) are
represented by triangles, the access groups (g1, . . . , g7)
by boxes with rounded corners, the encrypted re-
sources (r1, . . . , r7) by circles, and the encryption groups
(e1, . . . , e6) by boxes. In this example, there is one da-
tabase schema (s1) that contains two tables (s2, s3). The
table s2 contains four columns (s4, . . . , s7), and the table

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

6

Fig. 3: Scheme of the structure of an encrypted database.

s3 contains three columns (s8, . . . , s10). Each column
is associated with the corresponding set of encrypted
resources (e.g., r1 represents the actual data stored in
column s4). This scheme shows associations between
access groups and structures, and between encryption
groups and encrypted resources. The access group g2
includes the structure s2, and g5 includes the structures
s5, s6, s7. Similarly, the encryption group e1 contains r1
and e4 contains r4, r5.

Fig. 4 refers to the same encrypted database repre-
sented in Fig. 3, but it highlights the relations among
access and encryption groups. Here, each access group
g1, . . . , g7 is associated with a derivation key v1, . . . , v7.
Similarly, each encryption group e is associated with an
encryption key k and an encryption algorithm φ. As an
example, the encryption group e2 is associated with the
algorithm φ1 and the encryption key k2. The definition of
encryption groups is driven by cross-column operations.
If multiple encrypted columns are involved in cross-
columns operations (e.g., JOIN), they must belong to
the same encryption group because they must share the
same resource key. For example, both resources r4 and
r5 belong to the encryption group e4, and are encrypted
through the algorithm φ3 using the key k4. Each arrow
represents a parent-child relationship between two ac-
cess groups, or one access group and one encryption
group. Each arrow that connects two access groups is
associated with a token. As an example, a parent-child
relationship g1 Í g2 is associated with the token t1,2.

4.3 Access control enforcement strategy

For the sake of clarity, from now on we refer to the
proposed models of plaintext (1) and encrypted (2)
databases by using the following disambiguated nota-
tions.

P :“ pSP ,ą,RP q

E :“ pSE ,ą,RE ,G,V,Φ,K, E , T , θ,Γq

We define that for each plaintext structure si P SP ,
there exists an associated access group gi P G in the
encrypted database. In particular, we highlight that the

Fig. 4: Scheme of the access and encryption groups of an
encrypted database.

access group gi is identified by the same name of the
plaintext structure si. Each encrypted structure se P SE

has an encrypted name. All and only users authorized
to enter the access group gi know the corresponding
derivation key vi, and are able to know the names of
the encrypted structures se included in gi.

From this definition, it follows that the access control
matrix A defined by the triple pU ,SP ,Aq for the plaintext
database P (Section 4.1) can also be applied to the triple
pU ,G,AEq defined for the encrypted database E. As a
consequence, MuteDB transparently transforms an au-
thorization rule au,si P A defined on a plaintext structure
si into the authorization rule au,gi P AE which is defined
on the corresponding access group gi. The authorization
rules are automatically enforced in the encrypted data-
base because a user u is authorized to access se if and
only if he/she is able to calculate the derivation key vi
associated with the corresponding access group gi.

Let us give an example by referring to Figs. 2, 3 and 4.
If a user u is authorized for the database structure s2 of
the plaintext database (as in Fig. 2) by the access control
matrix A, then he/she is also authorized for the access
group g2 of the encrypted database (see Fig. 3) by the
access control matrix AE . Hence, this user is able to
access all the descendant access groups by using the
public tokens and the derivation key v2 (see Fig. 4).
The user is also implicitly authorized to access the
encryption groups descending from g2, and can decrypt
all the encrypted resources that are included in these
encryption groups. In the considered example, the user
u owns an implicit authorization to g4 and g5. Hence,
he/she is also implicitly authorized to access e1, e2, e3, e4,
and can decrypt the resources r1, r2, r3, r4, r5.

Just to give a detailed example, we describe how
u is able to decrypt r3. Since u is authorized for g2,
he/she already knows the derivation key v2 and also
the token t2,5 because all the tokens are public, and g5
because it is a descendant of g2. Hence, u can compute
v5 through the Equation (4): v5 “ θpv2, g5, t2,5q. After
having computed v5, u can employ the Equation (6)
to compute the set of keys associated with the encryp-

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

7

tion groups e2, e3, e4 and the encrypted names of the
associated structures s5, s6, s7: Γpv5, g5, tφe2 , φe3 , φe4uq “
tps5, k2q, ps6, k3q, ps7, k4qu. As the information included
in the encrypted resource r3 belongs to the encryption
group e3, it can be decrypted through the key k3.

4.4 Generation of credentials

We now describe the credentials distribution scheme
D used to generate and deliver secret keys to tenant
database users. The DBA client applies this scheme to
enforce the access rules included in the access control
matrix AE :

D :“ pU ,G,AE ,V, T , θq (7)

where pU ,G,AEq represents the access control rules ap-
plied to the encrypted database, V and T are the sets of
derivation keys and tokens as described in Section 4.2,
θ is the derivation function defined in Equation (4).

Each user u P U owns a single derivation key vu P V ,
and a set of public tokens Tu Ă T . The user u is
able to calculate the derivation keys vg P V through
the function θ if and only if there exists an associated
token tvu,vg

P Tu. In order to enforce the access rules in
the access control matrix AE , the DBA client randomly
generates the derivation key vu for each user u, where
vu represents the secret key that is included in the
credentials of the user. After that, the DBA client scans
the access control matrix by rows, thus obtaining the
capability list of each user. For each access group g that
is included in the capability list capu, the DBA client
computes a token tvu,vg

, and inserts it in Tu.

5 METADATA MANAGEMENT

Database metadata include all information allowing a
MuteDB client to translate plaintext SQL operations into
operations working on the encrypted database.

We describe the original solutions adopted by Mut-
eDB to manage metadata. Existing proposals use trusted
infrastructures to store and distribute metadata informa-
tion [4], [18] or require database users to maintain them
locally [12]. These schemes simplify metadata manage-
ment, but they limit scalability and availability of a cloud
database service. The MuteDB alternative is to store
metadata in the cloud database together with encrypted
tenant data. This approach allows each client to access
metadata directly and concurrently through standard
SQL operations, thus avoiding system bottlenecks and
single point of failures at the tenant side. Metadata
contain sensitive information, hence it is necessary to
store them in an encrypted form. Unlike the proposals
of the same authors in which all users are provided with
the same master encryption key [3], MuteDB proposes a
new metadata management strategy that enforces access
control policies at the encryption level, by generating a
different encryption key for each user and by ensuring
that each user is able to decrypt all and only encrypted
tenant data on which he/she has legitimate access.

StructureID DBToken

MACpv1, ‘db’q
tAESpv1, ‘db.t1’q, t1,2u,
tAESpv1, ‘db.t2’q, t1,3u

MACpv2, ‘db.t1’q
tAESpv2, ‘db.t1.c1’q, t2,4u,
tAESpv2, ‘db.t1.c2’q, t2,5u

MACpv3, ‘db.t2’q
tAESpv3, ‘db.t2.c1’q, t3,6u,
tAESpv3, ‘db.t2.c2’q, t3,7u

TABLE 1: Database tokens table.

ColumnID Enc

MACpv4, ‘db.t1.c1’q tAESpv4, ‘φ1’q, AESpv4, k1qu

MACpv5, ‘db.t1.c2’q
tAESpv5, ‘φ1’q, AESpv5, k2qu,
tAESpv5, ‘φ2’q, AESpv5, k3qu,
tAESpv5, ‘φ3’q, AESpv5, k4qu

MACpv6, ‘db.t2.c1’q
tAESpv6, ‘φ1’q, AESpv6, k5qu,
tAESpv6, ‘φ3’q, AESpv6, k4qu

MACpv7, ‘db.t2.c2’q tAESpv7, ‘φ4’q, AESpv7, k6qu

TABLE 2: Database encryption table.

UserID UToken

MACpvu1, ‘u1’)
tAESpvu1, ‘db.t1’q, tu1,v2u,
tAESpvu1, ‘db.t2’q, tu1,v3u

MACpvu2, ‘u2’) tAESpvu2, ‘db.t2’q, tu2,v3u

MACpvu3, ‘u3’) tAESpvu3, ‘db’q, tu3,v1u

MACpvu4, ‘u4’) tAESpvu4, ‘db.t2.c2’q, tu4,v7u

TABLE 3: Users tokens table.

The naı̈ve solution of using the same encrypted meta-
data structure and to enforce access control policies by
replicating metadata for each user has several draw-
backs: metadata replication causes storage overhead and
requires some consistency management scheme. This
requires locking and synchronization mechanisms that
increase concurrency conflicts and lower database per-
formance as the number of users increases. The novel
metadata management strategy proposed in this paper
guarantees the following benefits: each user is provided
with unique credentials that allow him/her to encrypt
and decrypt only information on which he has legitimate
access; MuteDB clients can perform all operations sup-
ported by the SQL-aware algorithms in the encrypted
database concurrently and independently; the DBA is
the only subject authorized to modify database metadata
in order to enforce changes of the access control matrix
such as granting and revoking access authorizations.

Independently of the number of users, MuteDB stores
all metadata in three tables. The database tokens table con-
tains all information related to the encryption enforce-
ment scheme. The database encryption table contains all
information related to the algorithms and keys used to
encrypt resources. These two tables include all informa-
tion required by the encrypted database model proposed
in Section 4.2. The users tokens table stores all information
related to the users credentials (see Section 4.4). Each of
these tables has two columns: the first column is used
as an index to access the actual metadata that are stored
in the second column.

In the database tokens table, each row is associated
with a structure, namely s, of the plaintext database.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

8

The index column is the result of a deterministic MAC
function applied to the name of the structure by using
the derivation key associated with s as its encryption
key. The metadata column memorizes the set of data
associated with all the children of s. Each child is
represented by two values: the former is an encrypted
version of the child name, obtained by using the AES
algorithm and the derivation key associated with s; the
latter is a public token that links s to the child. Structures
described in this table are not leafs (i.e., columns) of
the hierarchical representation of the plaintext database.
Table 1 is an example of database tokens table associated
with the encrypted database represented in Fig. 3. The
StructureID is the index column, and DBToken is the
metadata column. The first row includes information
related to the structure s1 that represents the database
schema. The StructureID stores an encrypted version
of its name (MACpv1, ‘db’q), and DBToken contains the
information related to the two children tables ‘db.t1’ and
‘db.t2’. For example, for ‘db.t2’ it stores AESpv1, ‘db.t2’q
which is the encrypted version of its name, and t1,3
which is the public token that allows users that know
v1 and ‘db.t2’ to compute the derivation key associated
with ‘db.t2’ (v3) by means of the Equation (4).

The database encryption table represents the relation-
ships between columns in the encrypted and plaintext
databases. Each row is associated with a column, namely
c, of the plaintext database. The index column of this
table has the same structure of the index column of the
database tokens table. The metadata column stores the
set of data associated with all the encrypted columns
related to c. Each encrypted column is represented by
two values: the former is an encrypted version of the
name of the SQL-aware encryption algorithm, obtained
through the AES algorithm and the derivation key as-
sociated with c; the latter value is an encrypted version
of the resource key used to cipher data stored in the
encrypted column. This key is encrypted through the
AES algorithm and the derivation key of c. Table 2 is an
example of database encryption table, where ColumnID is
the index column, and Enc is the metadata column. The
second row includes information related to the plaintext
column ‘db.t1.c2’. The Enc column includes metadata
associated with the three encrypted columns s5, s6, s7
within the access group g5 (Fig. 3). As an example,
the resource r4 included in s7 is encrypted through the
algorithm φ3 and the resource key k4. It is worth to
observe that also r5 is encrypted through the algorithm
φ3 and the resource key k4, because r4 and r5 belong
to the same encryption group and hence they share the
same encryption algorithm and resource key.

The users tokens table contains information that is
necessary to each user to derive his/her resource en-
cryption keys. Each row is associated with a user. The
index column stores a MAC computed over the user
identifier with the user derivation key. The metadata
column memorizes a set of data in which each element
represents an explicit authorization to access a structure

of the plaintext database. Each authorization includes
two values: the former is the name of the structure
encrypted through AES and the user derivation key; the
latter is the public token that allows the user to compute
derivation key associated with the encrypted structure.

Let us consider an example in which four users
(u1, . . . , u4) have legitimate access to different structures
of the plaintext database of Fig. 2. The user u1 has an
explicit authorization for ‘db.t1’ and ‘db.t2’; u2 for ‘db.t2’;
u3 for ‘db’; u4 for ‘db.t2.c2’. We recall from the Section 4.1
that users are implicitly authorized to access all the
descendant structures and resources. Table 3 shows the
content of the users tokens table in the corresponding
encrypted database.

An important objective of the metadata table design
is to avoid disclosure of any association between the
encrypted database structures and the metadata, and
between the users and the metadata information. To
this purpose, MuteDB uses AES, MAC functions and
random initialization vectors. As a result, the same
metadata or structure identifier is never encrypted to
the same ciphertext value, thus making each of them
indistinguishable to a cloud insider even if he colludes
with a legitimate database user.

6 OPERATIONS

In this section we describe how database operations
are performed by the MuteDB clients. By referring to
the same encrypted database, users and access control
policies presented in Section 5, we consider the three
most important use cases from the point of view of
this paper: translation of a plaintext SQL operation into
an encrypted operation; provisioning a new user with
access privileges; revocation of existing privileges.

Query translation. We describe how a plaintext SQL
operation is translated into an encrypted operation by
taking as an example that the user u1 has to execute the
following operation: SELECT SUM(c2) FROM t1 WHERE
c1 ą 10. We assume that the encryption algorithm φ1

used to encrypt r1 is order preserving [19], and the
algorithm φ2, which is used to encrypt r2, is homomor-
phic with respect to sums [20]. We also assume that
this is the first execution of the MuteDB client, hence
no metadata is cached locally, but the only information
available is vu1, that is the u1 derivation key included in
the user credentials. The MuteDB client of u1 retrieves
the u1 tokens from the user tokens table (ut-table) by
executing the following query: SELECT UToken FROM
ut-table WHERE UserID = MACpvu1, ‘u1’q. This opera-
tion returns all the structures for which u1 is explicitly
authorized and the related tokens. The MuteDB client
decrypts the structure names by using its own derivation
key vu1 and computes the derivation key v2 by using
the public token tu1,v2

because the query requires an
access to the table t1. A second query is executed to the
database tokens table (db-table): SELECT DBToken FROM

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

9

db-table WHERE StructureID=MACpv2, ‘db.t1’q. This op-
eration returns encrypted column names and their to-
kens. By using v2, the u1 client decrypts these names
and computes the derivations keys v4 and v5 required
to operate over encrypted versions of the columns t1.c1
and t1.c2. The MuteDB client executes the third query
on the database encryption table (enc-table): SELECT Enc
FROM enc-table WHERE ColumnID=MACpv4, ‘db.t1.c1’q
OR ColumnID=MACpv5, ‘db.t1.c2’q. The results include
resource keys and encryption algorithms of all the en-
crypted columns corresponding to the plaintext columns
t1.c1 and t1.c2. The MuteDB client decrypts algorithm
names and resources keys. Since t1.c2 has three en-
crypted representations, the client chooses φ2 as its
encryption algorithm and k3 as its resource key. Now,
the client owns all the information required to trans-
late the plaintext query into the encrypted query.
First it computes the names of the encrypted table
s2 and of the encrypted columns s4 and s6: s2 “
AESdetpv2, ‘db.t1’q, s4 “ AESdetpv4, ‘db.t1.c1’|‘φ1’q, and
s6 “ AESdetpv5, ‘db.t1.c2’|‘φ2’q, where AESdet represents
deterministic AES encryption using a constant initializa-
tion vector. Moreover, the client encrypts the constant
value ‘10’ as y “ φ1pk3, 10q. The encrypted query is: SE-
LECT HSUM(s6) FROM s2 WHERE s4 ą y, where HSUM
is a remote stored procedure that executes homomorphic
sums [20]. Metadata are cached by the MuteDB clients,
hence the successive executions of SQL operations using
the same metadata do not require a metadata retrieval
from the cloud database. In most workloads metadata
caching allows the client to directly encrypt queries. In
the use case scenarios that include database structure
modifications, MuteDB can leverage standard isolation
mechanisms to guarantee consistency of encrypted data
and metadata as proposed in [3].

User creation and privilege provisioning. Whenever
a new user is created or when access control policies
change by giving more privileges to an existing user, the
DBA has to update metadata reflecting the new access
control policies. The creation of a new user implies the
generation of a new derivation key, and the insertion
of a new row in the users tokens table. The index field
of the new row is the deterministic MAC computed
over the user identifier through the user derivation key.
Since the metadata field of the row related to the new
user is empty, at this point the user cannot access any
structure of the encrypted cloud database. To provision a
new privilege to an existing user, the DBA updates the
metadata field of the user tokens table row related to
that user by inserting all metadata information related
to the new authorization. This information includes the
encrypted version of the plaintext structure for which
the user is authorized, and the new public token that
the user needs to compute the structure derivation key.
We highlight that MuteDB is able to provision new priv-
ileges with no necessity of distributing new credentials
to the users. This necessity represents one of the main

disadvantages of existing architectures for access control
enforcement that store encryption keys and complex
metadata structures in client machines (e.g., [5]).

User removal and privilege revocation. When a da-
tabase user is removed or when some of his access priv-
ileges are revoked, we have to invalidate all information
related to the revoked privileges because the user should
not be able to decrypt information for which he/she
is no longer authorized. These operations include the
renewal of metadata, and the re-encryption of encrypted
information through download/upload operations of
encrypted tenant data from/to the cloud database. They
are among the most expensive processes of any archi-
tecture that enforces access control of outsourced data
through encryption. Indeed, other countermeasures (e.g.,
access limitation to the database, updating just tokens or
derivation keys) that do not include data re-encryption
do not guarantee confidentiality because the user may
have maintained locally a private copy of resource keys
and use them to collude with a cloud insider. In addition
to resource re-encryption, MuteDB updates metadata
by renewing all the encryption keys of the revoked
resources, and the tokens and derivation keys that were
used to obtain these encryption keys. We describe the
metadata update process by considering as an example
the revocation of access privileges on table t2 for user
u1 (see Figs. 3 and 4). Renewing resources encryption
keys require the DBA client to identify all encryption
groups that are descendant of the access group related
to t2. In this example, the access group is g3 and all
descendant encryption groups are e4, e5, e6. The DBA
client generates a new random resource key for each
encryption group, and generates new random derivation
key for g3 and for the descendant access groups g6 and
g7. Then, it computes all tokens that point to or that exit
from any access groups for which a new derivation key
has been generated, that are t1,3, t3,6, t3,7, and between
users and access groups, that are tu2,v3

, tu4,v7
. These

operations are efficiently executed by MuteDB thanks to
the fine-grained storage granularity of the access control
enforcement scheme and of metadata tables.

7 EXPERIMENTAL EVALUATION

In this section we evaluate the performance and scala-
bility of the proposed architecture by using workloads
based on the standard database benchmark TPC-C and
on the cloud database stress test YCSB [21] executed
by concurrent clients that are geographically distributed
over ten different countries of the Planetlab platform [8].
The experimental results on a real setting represent an
additional contribution of this paper.

7.1 Experimental testbed

The MuteDB prototype is implemented in Python. It
supports the main data manipulation (SELECT, INSERT,
UPDATE, DELETE) and data definition (CREATE, DE-
LETE) operations of the SQL language with no required

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

10

modification of the cloud database service, and it can be
ported to any relational DBMS and to any commercial
cloud database service.

The current implementation of the MuteDB prototype
includes all the encryption algorithms that are neces-
sary to support each SQL operation of the TPC-C and
YCSB workloads on the encrypted database columns.
For example, equality check is supported by determin-
istic ciphers (DET) that preserve data equality [22]–
[24]; order comparison operations, that is, “, ă, ą, ď,
ě, can be executed through Order Preserving Encryp-
tion (OPE) [19] that preserves the same order of unen-
crypted data; sum of integers is made available through
the Paillier algorithm [20] that is homomorphic with
respect to the sum operator. Other operations, such as
string match and multiplication, are feasible through
Search algorithms [25], [26] and RSA, respectively. The
database columns not requiring any computation can be
encrypted through standard algorithms such as AES [23]
or Blowfish [24] with random initialization vectors. It
is important to observe that the MuteDB architecture is
modular so it can integrate other encryption algorithms.

The experimental testbed is composed by a Post-
greSQL 9.3 database server located in Europe and by
up to 80 clients geographically distributed over ten
countries of Planetlab Europe [8]. We highlight that this
setting not considering clients located in other conti-
nents represents a worst case for the performance of the
MuteDB architecture: we have experimentally verified
that network latencies higher than 100ms introduce a
unrealistic positive bias favoring our solution because
they mask the overheads introduced by the encryption,
access control and concurrency management of MuteDB.

As we present the first thorough experimental eval-
uation of an encrypted cloud database service subject
to real Internet dispersed clients, we had to carry out
some preliminary experiments that aimed to evaluate the
characteristics of the Planetlab clients having different
network latencies and computational capabilities. For
each client, we evaluated its average Round Trip Time
with respect to the cloud database server (RTT in ms),
and the average time required for an OPE encryption
(ENC time in ms) that is the most computationally ex-
pensive algorithm in our prototype. The ENC times of
the 80 Planetlab clients with respect to their RTT are
represented in Fig. 5. The RTT of most clients concentrate
between 30˜40ms (Central Europe) and 50˜60ms (West
and North Europe), with some clients between 15˜20ms
and around 70ms. The majority of clients have similar
computational capabilities as demonstrated by the con-
centration of the ENC times in a range between 8ms and
13ms with the exception of a few outliers.

The first set of experiments aims to compare the
performance of MuteDB and a plaintext database that
receive realistic SQL operations. To this purpose, we use
a workload based on the standard TPC-C benchmark
and two TPC-C compliant database configurations with
100 warehouses that we denote as:

Fig. 5: Distribution of the RTTs and ENC times for the
80 Planetlab clients.

Type Name Query Ratios

A Update Heavy 50% READ, 50% UPDATE

B Read Mostly 95% READ, 5% UPDATE

C Read Only 100% READ

D Read Latest 95% READ, 5% INSERT

TABLE 4: YCSB workloads.

‚ TPC-C Standard (TPCC-STD), in which the TPC-C
workload is executed over a plaintext database not
using MuteDB;

‚ TPC-C MuteDB (TPCC-MuteDB), in which the TPC-
C workload is executed on a database encrypted
through MuteDB. All columns are encrypted with
the most secure encryption algorithm supporting
the SQL operations of the TPC-C workload.

We also perform several experiments based on
YCSB [21], that is a stress test for cloud database services
recently proposed by Yahoo. YCSB emulates various
workloads by executing different mixes of SQL opera-
tions (Table 4). They are complementary to the TPC-C
evaluations because they allow us to estimate the impact
of different encryption algorithms on the performance
perceived by the clients.

In the reported experiments, we consider YCSB-
compliant databases each consisting of one table com-
posed by 11 columns: one primary key and 10 data
columns. The table contains one million tuples, each
having a size of about 1 KB. We design the following
three configurations:

‚ YCSB Standard (YCSB-STD), where the columns of
the YCSB table are not encrypted.

‚ YCSB MuteDB - Best Case (MuteDB-Best), where
the primary key of the YCSB table is encrypted
with DET that is the fastest encryption algorithm
supported by MuteDB.

‚ YCSB MuteDB - Worst Case (MuteDB-Worst), where
the primary key of the YCSB table is encrypted with
OPE that is the most computationally expensive
encryption algorithm supported by MuteDB.

The data columns on which no computation is required
are encrypted through AES with a random initializa-
tion vector. We observe that each query of any YCSB
workload requires the execution of at least one operation
on the primary key column. For the encrypted configu-
rations, it means that each query requires at least one

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

11

 0

 20

 40

 60

 80

 100

 120

 140

TPCC-STD TPCC-MuteDB

R
es

po
ns

e
T

im
e

[m
s]

Fig. 6: Response times for the SQL operations in the
TPC-C configurations.

encryption using the algorithm associated with the pri-
mary key. Hence, the overhead introduced by MuteDB
for a realistic workload will fall between the overheads
of MuteDB-Best and MuteDB-Worst scenarios.

7.2 Performance evaluation

In the first set of experiments, we execute several TPC-
C tests with the 80 concurrent distributed clients for all
database configurations. Each test lasts twelve minutes,
of which we report the stable state results of ten minutes
in the middle. We monitor the TPC-C SQL operations
response times in order to evaluate the performance
overhead of MuteDB with respect to the network laten-
cies that are intrinsic to any cloud environment.

Fig. 6 reports the response times of the 80 clients of the
testbed with respect to all the SQL operations of the TPC-
C scenarios. The two boxplots represent the distribution
of the response times (Y -axis) experienced by clients in
the TPCC-STD (left boxplot) and TPCC-MuteDB (right
boxplot) configurations. This figure shows that clients
experience similar performance in the two configura-
tions: the median response time for the plaintext da-
tabase is slightly lower than 40ms, and the overhead
added by MuteDB is less than 6ms. The distribution of
the response times is similar as well: the interquartile
range differs of about 3ms and the whiskers distance of
about 10ms. These experiments carried out for a realistic
OLTP workload and geographically distributed clients
characterized by different computational capabilities and
round trip times show that the overhead expected by a
cloud tenant using MuteDB is limited and compatible
with real use cases.

We then investigate the details of the presented cumu-
lative results. For space reasons, we report how the net-
work RTT influences the response times by focusing on
the most frequent SELECT, UPDATE, INSERT and DE-
LETE SQL operations included in the TPC-C workload.
The scatterplot in Fig. 7 represents the average response
time of the most frequent SELECT operation executed
by all clients in both TPC-C configurations with respect
to their average RTT. The X-axis represents the clients
average RTTs while the Y -axis is the average response
time. To facilitate the interpretation of the results, we

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

Clients Average RTTs [ms]

TPCC-STD
TPCC-MuteDB

LR-STD
LR-MuteDB

Fig. 7: Average response time of the most frequent TPC-C
SELECT operation for different clients.

 0

 20

 40

 60

 80

 100

 120

 140

YCSB-STD MuteDB-Best MuteDB-Worst

R
es

po
ns

e
T

im
e

[m
s]

Fig. 8: Response times for the SQL operations in the
YCSB configurations.

draw two linear regression lines denoted by LR-STD and
LR-MuteDB, for the TPCC-STD and the TPCC-MuteDB
configurations respectively. The low performance over-
head introduced by MuteDB is highlighted by the over-
lap between the clouds of points related to the TPCC-
STD and TPCC-MuteDB configurations. The linear re-
gressions show that the overhead introduced by MuteDB
is approximately constant and independent of the RTT.
Indeed, while MuteDB overhead may be not negligible
for clients with very low RTT (e.g., from 13ms to 15ms
for a client having an average RTT of 13ms), it becomes
less significant for clients characterized by higher RTTs
(e.g., from 61ms to 64ms for a client having an average
RTT of 60ms). Analogous charts related to the most
frequent INSERT, UPDATE and DELETE operations of
the TPC-C workload confirm the same results and are
not included in this paper due to space limitations.

We now investigate the effects of different encryption
configurations on performance through several exper-
iments based on the YCSB stress test. In particular,
we consider 80 concurrent clients executing the YCSB
workloads A, B, C and D (Table 4), and we analyze
the distribution of the response times considering all the
SQL operations composing YCSB. Fig. 8 compares the
response times of the clients in the YCSB-STD (leftmost
boxplot), MuteDB-Best (central boxplot) and MuteDB-
Worst (rightmost boxplot) configurations. We observe
that the performance of YCSB-STD and MuteDB-Best are
almost equal. On the other hand, in the MuteDB-Worst
scenario, the response times are approximately 25˜30ms

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

12

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

Clients Average RTTs [ms]

YCSB-STD
MuteDB-Best

MuteDB-Worst
LR-STD
LR-Best

LR-Worst

Fig. 9: Average response time of YCSB SELECT operation
for different clients.

higher, and the interquartile range and the whiskers
distance increase. The higher variability is caused by
the different computational capabilities of the Planetlab
clients that compose our testbed. A breakdown of these
results is presented by the scatterplot in Fig. 9 where
the average response time of each client is plotted as a
function of its average RTT. Similarly to Fig. 7 we draw
three linear regressions (LR-STD, LR-Best and LR-Worst)
to highlight the trends of the three clouds of points
that correspond to the YCSB-STD, MuteDB-Best and
MuteDB-Worst configurations. The linear regressions re-
lated to the YCSB-STD and MuteDB-Best configurations
are similar and the scatterplots denote narrow clouds of
points. As expected, the linear regression of the MuteDB-
Worst response time is higher and its scatterplot is
characterized by a high dispersion of the results. The
interesting result is that the overall overhead of the worst
case scenario remains stable for any RTT between the
clients and the cloud service.

7.3 Scalability evaluation

In the following set of experiments we evaluate the
scalability of the proposed architecture subject to dif-
ferent workloads with respect to increasing number of
concurrent clients. Since we are working on a real plat-
form consisting of clients that differ in terms of RTT
and computational capability, for the sake of fairness
it is important to add at each new iteration of the
scalability tests a set of clients that are relatively uniform
to the previous set. To this purpose, we divide the 80
Planetlab clients in ten groups where each group consists
of eight clients with similar RTT. The tests are repeated
for increasing number of geographically distributed and
concurrent clients, by adding one client from each group
at every iteration. The first iteration of each test has 10
clients, the second iteration 20 clients, and so on. Each
iteration lasts twelve minutes of which we report the
stable state results of ten minutes in the middle. The
results of the most significant scalability experiments are
reported in Figs. 10.

The TPC-C throughput denotes the number of TPC-
C transactions committed per minute on the database
server. In Fig. 10a, we report on the Y -axis the TPC-C

throughput of the TPCC-STD and TPCC-MuteDB con-
figurations for increasing number of concurrent clients
represented on the X-axis. We are mainly interested in
evaluating the scalability of the proposed architecture
and the impact of cryptography. Although the absolute
values of the TPC-C throughputs are less important for
the scope of this paper, we observe that the proposed
results are affected by network latencies and hence they
cannot be compared to those of typical TPC-C evalua-
tions obtained in local deployments. From Fig. 10a we
can appreciate that the TPCC-STD and TPCC-MuteDB
throughputs both scale linearly for up to 40 clients
and slightly sub-linearly for higher numbers of clients.
Even more importantly, the throughput slowdown, which
is defined as the difference between the plaintext and
the encrypted configuration throughputs, remains rather
constant for any number of clients. This is an important
result because it shows that the scalability of the cloud
database service is not affected by the solutions adopted
by MuteDB.

Similar conclusions can be drawn by analyzing the
results obtained by using the Update Heavy workload
(A) of YCSB reported in Fig. 10b. The X-axis represents
the number of concurrent clients, and the Y -axis reports
the YCSB throughput as the total number of SQL oper-
ations executed per second on the database server. The
three lines represent the YCSB throughput of the YCSB-
STD, MuteDB-Best and MuteDB-Worst configurations,
respectively. In all the three scenarios, the scalability is
linear up to 30 clients, and then sub-linear.

Different results are obtained for the Read-Only (C)
YCSB workload. Fig. 10c shows that the system scales
linearly for up to 80 clients in all the three database
configurations. We observe that a read-only workload
is rather unrealistic but it is interesting as a term of
comparison. In such scenario, where the throughputs
keep scaling linearly because there are no database con-
sistency issues due to additional concurrent clients, the
throughput slowdown of the MuteDB-Worst configura-
tion tends to be more evident. In any case, we remark
that this represents a worst case scenario and in realistic
workloads the throughput would fall between those of
MuteDB-Best and MuteDB-Worst.

All results confirm that the solutions adopted in the
MuteDB architecture are efficient and do not affect the
scalability of cloud database services.

8 RELATED WORK

Many confidentiality solutions exist for cloud storage
services [27], [28] but they do not support the execution
of SQL operations on encrypted data. Other techniques
guaranteeing data confidentiality through encryption
managed by the cloud provider, standard database meth-
ods [29] and policy enforcement strategies [30] are not
acceptable because modern threat models assume that
a cloud provider employee could access tenant data.
MuteDB is more related to proposals performing op-
erations on encrypted databases [3], [4], [7], [10], and

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70 80

T
P

C
-C

 T
hr

ou
gh

pu
t [

T
x/

m
in

]

Number of concurrent clients

TPCC-STD
TPCC-MuteDB

(a) TPC-C Workload

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80

Y
C

S
B

 T
hr

ou
gh

pu
t [

qu
er

ie
s/

se
c]

Number of concurrent clients

YCSB-STD
MuteDB-Best

MuteDB-Worst

(b) YCSB Workload A (Update Heavy)

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80

Y
C

S
B

 T
hr

ou
gh

pu
t [

qu
er

ie
s/

se
c]

Number of concurrent clients

YCSB-STD
MuteDB-Best

MuteDB-Worst

(c) YCSB Workload C (Read Only)

Fig. 10: Throughput for increasing number of concurrent clients for different workloads and database configurations.

enforcing access control at the encryption level [5], [6],
[31], although the following reasons differentiate our
architecture from the state of the art.

The solutions in [4] and [10] require that clients issue
SQL queries through one trusted proxy managing all
encryption and decryption operations, and forwarding
them to the encrypted cloud database. We avoid a sim-
ilar approach because any architecture relying on one
intermediate server limits the availability and elasticity
of a cloud database service. Moreover, from the access
control perspective, the proposed solutions are similar
to that of an internally managed infrastructure where a
trusted proxy stores all encryption and decryption keys,
and clients access the encrypted database transparently.

The proposals in [3], [7] avoid the need of an inter-
mediate proxy server. The architecture in [7] adopts an
access control mechanism that is based on a reference
monitor within the cloud infrastructure and on a trusted
authentication server. The solution proposed in [3] by
the same authors solves client concurrency management
problems for write/read accesses to encrypted data in
the cloud, but it does not guarantee data isolation and
confidentiality against the collusion threats considered
in this paper. Indeed, all tenant users are provided with
the same master key, and access control policies are
implemented by leveraging the standard database access
control mechanisms at the cloud provider side. Here, we
present an architecture guaranteeing same security and
confidentiality levels of an internally managed database
in which the maximum information leakage that can be
caused by a tenant insider is limited by his/her database
access privileges.

Some interesting solutions for enforcing access control
policies on outsourced information are proposed in [5],
[6], [31], [32]. The encryption schemes in [31] allow a
tenant company to outsource confidential information
to the cloud, but they do not permit execution of SQL
operations on encrypted data. The authors in [5] allow
efficient key-value data retrieval in publish-subscribe
scenarios where only one user is able to execute write
operations. These architectures enforce access control
through encryption at the record-level. However, they
cannot be applied to a cloud database scenario where
several users should be able to execute read and write
operations as well as execute computations on encrypted

data. The proposal of hierarchical attribute-based en-
cryption schemes [6] to enforce access control policies
may be applied to a cloud storage service, but not to
a cloud database service because they do not support
SQL operations. As theoretically introduced in [33], our
proposal combines for the first time standard access
control models of relational databases with the execution
of SQL operations on encrypted data stored in the cloud.
As a further original contribution, we remark that this
paper includes for the first time performance and scala-
bility evaluations obtained in a real environment and for
realistic workloads executed by clients that are dispersed
over different geographical areas.

9 CONCLUSIONS

In this paper we propose MuteDB, a novel architecture
for cloud database services that guarantees for the first
time data confidentiality through SQL-aware encryption
algorithms and data isolation through access control
enforcement based on encryption and key derivation
techniques. These solutions allow MuteDB to address
threat issues that are relevant for cloud services in-
cluding risks of information leakage due to collusions
between cloud provider employees and tenant users. The
most important solutions are described through formal
models, while the feasibility, performance and scalability
of the proposed architecture are demonstrated through a
large set of experiments carried out through a prototype
deployed in a real Internet-based environment where
cloud database services are accessed concurrently by ge-
ographically distributed clients. All results confirm that
for realistic workloads, the MuteDB architecture achieves
performance and scalability comparable to those of un-
encrypted cloud database services. Ongoing work is
focused on integrating private information retrieval solu-
tions in MuteDB with the goal of preventing information
leakage caused by access pattern analyses, and novel
architectural solutions for hybrid cloud environments.

REFERENCES

[1] S. Pearson and A. Benameur, “Privacy, security and trust issues
arising from cloud computing,” in Proc. 2010 IEEE Int’l Conf. Cloud
Computing Technology and Science, Nov.-Dec. 2010, pp. 693 – 702.

[2] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically
scaling applications in the cloud,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 1, pp. 45–52, 2011.

2168-7161 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2014.2378782, IEEE Transactions on Cloud Computing

14

[3] L. Ferretti, M. Colajanni, and M. Marchetti, “Distributed, concur-
rent, and independent access to encrypted cloud databases,” IEEE
Trans. Parallel and Distributed Systems, vol. 25, no. 2, pp. 437–446,
2014.

[4] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrish-
nan, “CryptDB: protecting confidentiality with encrypted query
processing,” in Proc. 23rd ACM Symp. Operating Systems Principles,
Oct. 2011, pp. 85–100.

[5] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati, “Key management for multi-user
encrypted databases,” in Proc. ACM Workshop Storage Security and
Survivability, Nov. 2005, pp. 74 – 83.

[6] G. Wang, Q. Liu, J. Wu, and M. Guo, “Hierarchical attribute-based
encryption and scalable user revocation for sharing data in cloud
servers,” Computers & Security, vol. 30, no. 5, pp. 320–331, 2011.

[7] M. R. Asghar, G. Russello, B. Crispo, and M. Ion, “Supporting
complex queries and access policies for multi-user encrypted
databases,” in Proc. 2013 ACM Workshop on Cloud computing
security, Nov. 2013, pp. 77–88.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzo-
niak, and M. Bowman, “Planetlab: an overlay testbed for broad-
coverage services,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 3, pp. 3–12, 2003.

[9] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Appli-
cations. Cambridge university press, 2004.

[10] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing sql over
encrypted data in the database-service-provider model,” in Proc.
2002 ACM SIGMOD Int’l Conf. Management of data, Jun. 2002, pp.
216–227.

[11] E. Bertino, P. Samarati, and S. Jajodia, “Authorizations in rela-
tional database management systems,” in Proc. First ACM Conf.
Computer and communications security, Nov. 1993, pp. 130–139.

[12] E. Damiani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Para-
boschi, and P. Samarati, “Metadata management in outsourced
encrypted databases,” in Proc. Second VLDB Int’l Conf. Secure Data
Management, 2005, pp. 16–32.

[13] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,
J. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones,
J. W. Mehl et al., “System r: relational approach to database
management,” ACM Trans. Database Systems, vol. 1, no. 2, pp. 97–
137, 1976.

[14] R. S. Sandhu and P. Samarati, “Access control: principle and
practice,” IEEE Comm. Magazine, vol. 32, no. 9, pp. 40–48, 1994.

[15] P. Samarati and S. De Capitani di Vimercati, “Access control:
Policies, models, and mechanisms,” in Foundations of Security
Analysis and Design, 2001, pp. 137–196.

[16] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic
and efficient key management for access hierarchies,” ACM Trans.
Information and System Security, vol. 12, no. 3, pp. 1–43, 2009.

[17] J. Crampton, K. Martin, and P. Wild, “On key assignment for
hierarchical access control,” in Proc. 19th IEEE Workshop Computer
Security Foundations, Jul. 2006, pp. 98–111.

[18] S. Tu, M. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proc. 39th Int’l Conf.
Very Large Data Bases, Aug. 2013, pp. 289–300.

[19] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: Improved security analysis and alternative
solutions,” in Proc. Advances in Cryptology, Aug. 2011, pp. 578–595.

[20] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Advances in Cryptology, May 1999.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proc. First ACM Symp. Cloud Computing, 2010, pp. 143–154.

[22] M. Bellare, A. Boldyreva, and A. ONeill, “Deterministic and
efficiently searchable encryption,” in Prof. Advances in Cryptology.
Springer, 2007, pp. 535–552.

[23] J. Daemen and V. Rijmen, The design of Rijndael: AES – the advanced
encryption standard. Springer, 2002.

[24] B. Schneier, “Description of a new variable-length key, 64-bit
block cipher (blowfish),” in Proc. Cambridge Security Workshop Fast
Software Encryption, Dec. 1993, pp. 191–204.

[25] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Security and
Privacy, May 2000, pp. 44 – 55.

[26] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE

Trans. Parallel and Distributed Systems, vol. 25, no. 1, pp. 222–233,
2014.

[27] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten,
“Sporc: group collaboration using untrusted cloud resources,” in
Proc. Ninth USENIX Conf. Operating Systems Design and Implemen-
tation, Oct. 2010, pp. 337–350.

[28] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,” ACM
Trans. Computer Systems, vol. 29, no. 4, 2011.

[29] U. T. Mattsson, “A practical implementation of transparent en-
cryption and separation of duties in enterprise databases: protec-
tion against external and internal attacks on databases,” in Proc.
Seventh IEEE Int’l Conf. E-Commerce Technology, 2005, pp. 559–565.

[30] S. Pearson, M. C. Mont, L. Chen, and A. Reed, “End-to-end policy-
based encryption and management of data in the cloud,” in Proc.
Third IEEE Int’l Conf. Cloud Computing Technology and Science, Nov.-
Dec. 2011, pp. 689–703.

[31] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE Conf. Computer Communications, Mar. 2010.

[32] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. 13th ACM Conf. Computer and communications security, 2006,
pp. 89–98.

[33] L. Ferretti, M. Colajanni, and M. Marchetti, “Access control en-
forcement of query-aware encrypted cloud databases,” in Proc.
Fifth IEEE Int’l Conf. on Cloud Computing Technology and Science,
Dec. 2013, pp. 717–722.

Luca Ferretti is a Ph.D. student at the Inter-
national Doctorate School in Information and
Communication Technologies (ICT) of the Uni-
versity of Modena and Reggio Emilia, Italy. He
received the Master Degree in computer engi-
neering from the same University in 2012. His
research focuses on information security, and
cloud architectures and services. Home page:
http://weblab.ing.unimo.it/people/ferretti

Fabio Pierazzi is a Ph.D. student at the In-
ternational Doctorate School in Information and
Communication Technologies (ICT) of the Uni-
versity of Modena and Reggio Emilia, Italy. He
received the Master Degree in Computer Engi-
neering from the same University in 2013. His
research interests include security analytics and
performance evaluation of cloud services. Home
page: http://weblab.ing.unimo.it/people/fpierazzi

Michele Colajanni is full professor in com-
puter engineering at the University of Modena
and Reggio Emilia since 2000. He received
the Master degree in computer science from
the University of Pisa, and the Ph.D. degree
in computer engineering from the University of
Roma in 1992. He manages the Interdepart-
ment Research Center on Security and Safety
(CRIS), and the Master in ”Information Security:
Technology and Law”. His research interests
include security of large scale systems, perfor-

mance and prediction models, Web and cloud systems. Home page:
http://weblab.ing.unimo.it/people/colajanni

Mirco Marchetti received his Ph.D. in Infor-
mation and Communication Technologies (ICT)
in 2009. He holds a post-doc position at the
Interdepartment Center for Research on Se-
curity and Safety (CRIS) of the University of
Modena and Reggio Emilia. He is interested
in intrusion detection, cloud security and in all
aspects of information security. Home page:
http://weblab.ing.unimo.it/people/marchetti

