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Abstract—Wireless sensor networks (WSNs) are increasingly
used in several applications, such as volcano and fire monitoring,
urban sensing, and perimeter surveillance. In a large WSN,
in-network data aggregation (i.e., combining partial results at
intermediate nodes during message routing) significantly reduces
the amount of communication overhead and energy consump-
tion. The research community proposed a loss-resilient aggrega-
tion framework called synopsis diffusion which uses duplicate-
insensitive algorithms on top of multi-path routing schemes
to accurately compute aggregates (e.g., predicate Count, Sum).
However, this aggregation framework does not address the prob-
lem of false sub-aggregate values contributed by compromised
nodes. This attack may cause large errors in the aggregate
computed at the base station which is the root node in the
aggregation hierarchy.

In this paper, we make the synopsis diffusion approach secure
against the above attack launched by the compromised nodes. In
particular, we present an algorithm to enable the base station to
securely compute predicate Count or Sum even in the presence
of such an attack. Our attack-resilient computation algorithm
computes the true aggregate by filtering out the contributions
of compromised nodes in the aggregation hierarchy. Thorough
theoretical analysis and extensive simulation study show that our
algorithm outperforms other existing approaches.

Index Terms—Data Aggregation, Hierarchical Aggregation, In-
network Aggregation, Sensor Network Security, Synopsis Diffu-
sion, Attack-Resilient

I. INTRODUCTION

Over the last decade WSNs are increasingly used in several
real-world applications [1], [2], [3], [4], such as wild habitat
monitoring, volcano and fire monitoring, urban sensing, and
military surveillance. In most cases, the sensor nodes form
a multi-hop network while the base station (BS) acts as the
central point of control. Typically, a sensor node has limitation
in terms of computation capability and energy reserves. The
BS wants to collect the sensed information from the network.
One common way is to allow each sensor node to forward
its reading to the BS, possibly via other intermediate nodes.
Finally, the BS processes the received data. However, this
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method is prohibitively expensive in terms of communication
overhead.

In-network data aggregation [5], [6] can reduce the amount
of communication and hence the energy consumed, especially
in large WSNs. The main idea is to combine partial results at
intermediate nodes during message routing. One approach [5],
[6] is to construct a spanning tree rooted at the BS, and then
perform in-network aggregation along the tree. The important
aggregates considered by the research community include
Count, and Sum. It is straightforward to generalize these
aggregates to predicate Count (e.g., number of sensors whose
reading is higher than 10 unit) and Sum. In addition, Average
can be computed from Count and Sum. We can also easily
extend a Sum algorithm to compute Standard Deviation and
Statistical Moment of any order.

However, communication losses resulting from node and
transmission failures, which are common in WSNs, can
adversely affect tree-based aggregation approaches. To ad-
dress this problem, we can make use of multi-path routing
techniques for forwarding sub-aggregates [5]. For duplicate-
insensitive aggregates such as Min and Max, this approach
provides a fault-tolerant solution. Unfortunately, for duplicate-
sensitive aggregates, such as Count and Sum, multi-path
routing leads to double-counting of sensor readings. Recently,
several researchers [7], [8] have presented clever algorithms
to solve this double-counting problem. A robust and scalable
aggregation framework called synopsis diffusion has been
proposed for computing duplicate-sensitive aggregates, such
as Count and Sum. This approach uses a ring topology where
a node may have multiple parents in the aggregation hierarchy.
Furthermore, each sensed value or sub-aggregate is represented
by a duplicate-insensitive bitmap called synopsis.

The possibility of node compromise introduces more chal-
lenges because most of the existing in-network aggregation al-
gorithms have no provisions for security. A compromised node
might attempt to thwart the aggregation process by launching
several attacks, such as eavesdropping, jamming, message
dropping, message fabrication, and so on. This paper focuses
on a subclass of these attacks in which the adversary aims to
cause the BS to derive an incorrect aggregate. By relaying a
false sub-aggregate to the parent node, a compromised node
may contribute a large amount of error to the aggregate. As
an example, during the Sum computation algorithm [8], [7], a
compromised node X can inject an arbitrary amount of error in
the final estimate of Sum by falsifying X’s own sub-aggregate.
We refer to this attack as the falsified sub-aggregate attack.
The threat model is detailed in Section IV.

In this paper, we design an algorithm to securely compute
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aggregates, such as Count and Sum despite the falsified sub-
aggregate attack. In particular, our algorithm which we call the
attack-resilient computation algorithm consists of two phases.
The main idea is as follows: (i) In the first phase, the BS
derives a preliminary estimate of the aggregate based on
minimal authentication information received from the nodes.
(ii) In the second phase, the BS demands more authentication
information from only a subset of nodes while this subset is
determined by the estimate of the first phase. Finally, the BS
is able to filter out the false contributions of the compromised
nodes from the aggregate. The key observation which we
exploit to minimize the communication overhead is that to
verify the correctness of the final synopsis (representing the
aggregate of the whole network) the BS does not need to
receive authentication messages from all of the nodes.

We examine the performance of our algorithm via both
thorough theoretical analysis and extensive simulation. The
per-node overall communication overhead in our algorithm
is max(O(m logA),O(mt)) where m is O( 1

ε2 log 1
δ
), A is the

aggregate value, and t compromised nodes are present in the
network. Note that m items are computed in parallel fashion to
result in an (ε,δ)-approximate aggregate as discussed in [9].
When Count is computed, A = N where N is the total
number of nodes in the network; when Sum is computed,
O(logA) = O(logN) + O(logv) where v is a single node’s
maximum value. An existing attack-resilient algorithm [10]
incurs O(N) communication overhead in the worst case, which
is much higher than ours given t << N, and the unit of sensed
values are such that log(v)<< N. Furthermore, our algorithm
incurs O(1) latency while the other existing algorithm [11]
takes O(logN) latency whereas both the algorithms (i.e. ours
and [11]) essentially incur the same communication overhead
to ensure the same approximation error guarantee.

One may be interested in knowing the difference of our
current work from our previously published related work.
Although our prior work [12] considers the same aggregation
framework (i.e. synopsis diffusion) and similar attack scenario
(i.e. falsified sub-aggregate attack) the goal (as well as the
outcome) is very different. Our prior work [12] presents only
a verification algorithm, which would fail to compute the
aggregate in the presence of an attack while our current work
will be successful in doing so. Furthermore, we previously pre-
sented another attack-resilient aggregation algorithm [13] for
the synopsis diffusion framework, but the algorithm proposed
in the current paper is more efficient. We stress that the design
principle of our current approach is much different from that
in [13], e.g., using a preliminary round to derive an estimate
of the aggregate which helps reduce the communication over-
head of the whole process is absent in [13]. Moreover, the
theoretical analysis technique present in the current work is
also different from that in [13] or [12].

It is to be noted that while our algorithm is designed
having WSNs in mind, it is straightforward to extend our
solution for secure aggregation query processing in a large-
scale distributed system such as a distributed database system
over the Internet [9].

The rest of this paper is organized as follows. Section II
reviews the body of related work, and Section III briefly

presents the synopsis diffusion approach. Section IV describes
the problem statement, the assumptions, and the threat model.
Section V describes our attack-resilient protocol. Section VI
presents the simulation results, and Section VII concludes this
paper. The Appendix section presents some additional results.

II. RELATED WORK

Several researchers have studied problems related to data
aggregation in WSNs.

A. Data Aggregation in a Trusted Environment

The Tiny Aggregation Service (TAG) to compute aggre-
gates, such as Count and Sum, using tree-based aggregation
algorithms were proposed in [5]. Similar algorithms to com-
pute Count and Sum were proposed in [6]. Moreover, tree-
based aggregation algorithms to compute an order-statistic
(i.e., quantile) have been proposed in [14].

To address the communication loss problem in tree-based
algorithms an aggregation framework called synopsis diffusion
is designed in [8], which computes Count and Sum using a ring
topology. Very similar algorithms are independently proposed
in [7]. These works use duplicate-insensitive algorithms for
computing aggregates based on [15]’s algorithm for counting
distinct elements in a multi-set.

TABLE I
COMPARING OUR WORK WITH THE PRIOR SCHEMES

Algori Aggregates Number Verification Attack-
-thms considered of com- resilient

-promised compu-
nodes tation

[5] Count, Sum 0 None None
[8], [7] Count, Sum 0 None None

[16] Count, Sum 1 Count, Sum None
[17] Count, Sum ≥ 1 Count, Sum None
[9] Count, Sum ≥ 1 Count, Sum None

[12] Count, Sum ≥ 1 Count, Sum None
[10] Count, Sum ≥ 1 Count, Sum Count, Sum
[11] Count, Sum ≥ 1 Count, Sum Count, Sum
[13] Count, Sum ≥ 1 Count, Sum Count, Sum

Our work Count, Sum ≥ 1 Count, Sum Count, Sum

B. Secure Aggregation Techniques

Several secure aggregation algorithms have been proposed
assuming that the BS is the only aggregator node in the
network [18], [19], [20]. These works did not consider in-
network aggregation. Only recently, the research community
has been paying attention to the security issues of hierarchical
aggregation.

The first attack-resilient hierarchical data aggregation proto-
col was designed in [16]. However, this scheme is secure when
only one malicious nodes is present. A tree-based verification
algorithm was designed in [17], [21] by which the BS can
detect if the final aggregate, Count or Sum, is falsified. A
few verification algorithms for computing Count and Sum
within the synopsis diffusion approach were designed in [9],
[12]. Recently, a few novel protocols have been proposed for
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‘secure outsourced aggregation’ [22]; however, as noted by the
authors, these algorithms are not designed for WSNs.

Although [17], [21], [9] prevent the BS from accepting a
false aggregate, they do not guarantee the successful computa-
tion of the aggregate in the presence of the attack. We further
stress that our own prior work [12] presents only a verification
algorithm for the synopsis diffusion framework, which would
fail in the presence of an attack. The attestation phase of
SDAP [10] can be expensively used to compute Count and
Sum in the presence of a few compromised nodes. Recently,
an attack-resilient aggregation algorithm for computing Count
and Sum has been proposed in [11], which is based on a
sampling technique. Despite the adversarial interference, this
algorithm can produce a (ε,δ)−approximation of the target
aggregate. We previously presented an attack-resilient aggre-
gation algorithm [13] for the synopsis diffusion framework, but
the current attack-resilient algorithm proposed in this paper
is more efficient. We thoroughly compare our current work
with all the prior attack-resilient algorithms [13], [10], [11] in
Section V-F.

We compare the security features of our schemes with those
of the existing schemes in Table I. For each scheme, we
indicate how many compromised nodes against which it is
secure. We also state if the scheme has provisions to verify
the computed aggregate and to compute the aggregate in the
presence of compromised nodes.

III. PRELIMINARIES: SYNOPSIS DIFFUSION

In [8] and [7], the authors proposed an aggregation frame-
work called synopsis diffusion which is based on a ring
topology as illustrated in Figure 1. During the query dis-
tribution phase, nodes form a set of rings around the base
station (BS) based on their distance in terms of hops from
BS. By Ti we denote the ring consisting of the nodes which
are i hops away from BS. In the subsequent aggregation
period, starting in the outermost ring, each node generates and
broadcasts a local synopsis. The synopsis generation function
is represented by SG(v), where v is the sensor value relevant
to the query. A node in ring Ti will receive broadcasts from
all of the nodes in its communication range in ring Ti+1. It
will then combine its own local synopsis with the synopses
received from its children using a synopsis fusion function
SF() and then broadcast the updated synopsis. Thus, the
fused synopses propagate level-by-level until they reach BS,
which combines the received synopses using SF(). Finally,
BS uses the synopsis evaluation function SE() to translate the
final synopsis to the answer to the query. We now describe
the synopsis diffusion algorithms for Count and Sum. These
algorithms are based on Flajolet and Martin’s probabilistic
algorithm for counting the number of distinct elements in a
multi-set [15]. Each node X generates a local synopsis QX

which is a bit vector. We now present a definition which we
repeatedly use in this paper.
Definition: A node X’s fused synopsis, BX , is recursively
defined as follows. If X is a leaf node (i.e., X is in the
outermost ring), BX is its local synopsis QX . If X is a non-leaf
node, BX is the logical OR of X’s local synopsis QX with X’s
children’s fused synopses.

If node X receives synopses BX1 ,BX2 , . . . ,BXd from d child
nodes X1, X2, . . ., Xd , respectively, then X computes BX as
follows:

BX = QX ||BX1 ||BX2 || . . . ||BXd , (1)

where || denotes the bitwise OR operator. Note that BX rep-
resents the sub-aggregate of node X , including its descendant
nodes. We note that BBS is same as the final synopsis B.

Fig. 1. Synopsis Diffusion over a Ring Topology—A node may have multiple
parents and multiple children. E.g. Node Y in ring Ti has 2 parents, Z1, and
Z2 of ring Ti−1. Y has 3 child nodes, X1, X2, and X3 of ring Ti+1. For brevity
all rings are not shown. The base station (BS) is at ring 0.

A. Count

In this algorithm, each node X generates a local synopsis
QX which is a bit vector of length η > logN′, where N′ is the
upper bound on Count. To generate QX , node X executes the
function CoinToss(X ,η) given below (Algorithm 1), where X
is the node’s identifier. Algorithm 1 can be interpreted as a
coin-tossing experiment with a hash function. The function
hashO f () whose output is 0 or 1 simulates a fair coin-toss.
CoinToss(X ,η) returns the number of attempts, say i, until the
first head occurs or η+1 if all of η tosses have been tail. In
the synopsis generation function SGcount , the i-th bit of QX is
set to ‘1’ while all other bits are ‘0’. Thus, QX is a bit vector
of the form 0(i−1).1.0(η−i) with probability 2−i.

begin
attemptNum=1;
while attemptNum < η+1 AND hashO f (< X ,attemptNum >) = 0 do

attemptNum=attemptNum+1;
end
return attemptNum;

end

Algorithm 1: CoinToss(X ,η) as executed by node X

The synopsis fusion function SF() is the bitwise Boolean
OR. Each node X fuses its local synopsis QX with the synopses
it receives from its children. Let B denote the final synopsis
computed by BS. We observe that B will be a bit vector of
length η of the form 1z−1.0.[0,1]η−z, where z is the lowest-
order bit in B that is 0. BS can estimate Count from B via
the synopsis evaluation function SE(): The count of nodes in
the network is 2z−1/0.7735. The synopsis evaluation function
SE() is based on Property 2 below. Intuitively, the number of
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sensor nodes is proportional to 2z−1 since no node has set the
z-th bit while computing CoinToss(X ,η).

Below we present a few important properties of the final
synopsis B computed at BS. The first three properties have
been derived in [15], [7], while Property 4 is documented from
our observation. Let B[i],1 ≤ i ≤ η denote the i-th bit of B,
where bits are numbered starting from the left. Also, N is the
number of nodes present in the network.
Property 1. For i < log2 N − 2log2 log2 N, B[i] = 1 with
probability ≈ 1. For i ≥ 3

2 log2 N, B[i] = 0 with probability
≈ 1.

This result implies that for a network of N nodes, we expect
that B has an initial prefix of all ones and a suffix of all zeros,
while only the bits around B[log2 N] exhibit much variation.
This provides an estimate of the number of bits, η, required
for a node’s local synopsis. In practice, η= log2 N′+4 bits are
sufficient to represent B with high probability [15], where N′

is the upper bound of Count. This result also indicates that the
length of the prefix of all ones in B can be used to estimate N.
Let z = min {i|B[i] = 0}, i.e., z is the location of the leftmost
zero in B. Then R= z−1 is a random variable representing the
length of the prefix of all ones in the synopsis. The following
results hold for R.
Property 2. The expected value of R, E(R)≈ log2 (φN), where
the constant φ is approximately 0.7735.

This result implies that R can be used as an unbiased esti-
mator of log2 (φN). It is the basis for the synopsis evaluation
function SE(), which estimates N as 2R/φ.
Property 3. The standard deviation of R,σR ≈ 1.1213.

To reduce the standard deviation of R, [15] proposed an
algorithm named PCSA, where m synopses are computed in
parallel.
Property 4. If N nodes participate in Count algorithm, the
expected number of nodes that will contribute a ‘1’ to the i-th
bit of the final synopsis B is N/2i.

We call these nodes contributing nodes for bit i of B. This
property is derived from the observation that each node X sets
the i-th bit of its local synopsis QX with probability 2−i. As an
example, for bit r = E(R) = log2 (φN), the expected number
of contributing nodes is 1/φ ≈ 1.29. This result also implies
that the expected number of nodes that contribute a ‘1’ to
the bits right to the i-th bit (i.e., bits j, where i < j ≤ η) is
approximately N/2i. As an example, the expected number of
contributing nodes for bits j ≥ r+1 is approximately 1/φ.

B. Sum

The Count algorithm can be extended for computing Sum.
The synopsis generation function SG() for Sum is a modifi-
cation of that for Count, while the fusion function SF() and
the evaluation function SE() for Sum are identical to those for
Count.

To generate the local synopsis QX to represent its sensed
value vX , node X invokes the function CoinToss(), used for
Count synopsis generation, vX times1. In the i-th invocation
(1 ≤ i ≤ vX ), node X executes the function CoinToss(Xi,η)
where keyi is constructed by concatenating its ID and integer

1Without loss of generality, each sensor reading is assumed to be an integer.

i (i.e., keyi =< X , i >), and η is the synopsis length. The value
of η is taken as log2 S′+4, where S′ is an upper bound on the
value of Sum aggregate. Note that unlike the local synopsis
of a node for Count, more than one bit in the local synopsis
of a node for Sum may be equal to ‘1’. The pseudo code of
the synopsis generation function, SGsum(X ,vX ,η), is presented
below (Algorithm 2).

begin
QX [index] = 0 ∀index, 1≤ index≤ η;
i=1;
while i≤ vX do

keyi =< X , i >;
index =CoinToss(keyi,η);
QX [index] = 1;
i = i+1;

end
return QX ;

end

Algorithm 2: SGsum(X,vX ,η) as executed by node X

Note that Count can be considered as a special case of Sum
where each node’s sensor reading is equal to one unit. [7]
showed that Properties 1, 2, 3, and 4 described above for
Count synopsis also hold for Sum synopsis, with appropriate
modifications. Below we present these properties of Sum
synopsis, which we will find useful in the rest of this paper.
Let B[i],1≤ i≤ η denote the i-th bit of the final synopsis B,
where bits are numbered starting from the left. Furthermore,
S is the Sum of the sensed values of the nodes present in the
network.
Property 1. For i < log2 S−2log2 log2 S, B[i] = 1 with prob-
ability ≈ 1. For i≥ 3

2 log2 S, B[i] = 0 with probability ≈ 1.
Property 2. Let R represent the length of the prefix of all
ones in B, i.e., R = z− 1 where z = min {i|B[i] = 0}. The
expected value of R, E(R) ≈ log2 (φS), where the constant φ

is approximately 0.7735.
Property 3. The standard deviation of R,σR ≈ 1.1213.

Unlike the above properties, Property 4 is not a straight-
forward extension of its counterpart for Count synopsis. From
the construction of the synopsis generation function, SGsum()
(Algorithm 2), we observe that if the Sum is S, then the
function CoinToss() is invoked S times in total considering
synopsis generation of all nodes. Each node X gets a chance
to set the i-th bit of QX , its local synopsis, vX times—each time
with probability 2−i. So, the expected number of contributing
nodes for the i-th bit of B not only depends on the total number
of nodes N and the value of i but also on the distribution of
sensor readings.
Property 4. The expected number of invocations of
CoinToss() that will contribute a ‘1’ to the i-th bit of the
final synopsis B is S/2i, where S is the value of Sum.

As an example, with r = E(R) = log2 (φS), the expected
number of invocations of CoinToss() which set the r-th to
‘1’ is 1/φ ≈ 1.29. This result also implies that the expected
number of contributing nodes for bit r is less than 1/φ. Fur-
thermore, the expected number of invocations of CoinToss()
that contribute a ‘1’ to the bits right to the i-th bit (i.e., bits j,
where i < j ≤ η) is approximately S/2i. As an example, the
expected number of invocations of CoinToss() that contribute
a ‘1’ to the bits right to the r-th bit is approximately 1/φ,
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which implies that the expected number of contributing nodes
for the bits to the right of the r-th bit is less than 1/φ.

Similarly, as in the case of Count, the PCSA algorithm
can be used to reduce the error in the estimate for Sum by
computing m synopses in parallel.

IV. THE PROBLEM STATEMENT

We now present the assumptions, discuss the threat model,
and formally state the problem that we address in this paper.

A. Assumptions

We assume that sensor nodes are similar to the current
generation of sensor nodes, e.g., MicaZ or Telos motes, in
their computational and communication capabilities and power
resources, while BS is a laptop class device supplied with long-
lasting power. We assume that BS cannot be compromised
and it uses a protocol such as µTesla [23] to authenticate its
broadcast messages to the network nodes. We also assume
each node shares a pair-wise key with BS. Let the key of the
node with ID X be denoted as KX . To authenticate a message
to BS, a node X sends a MAC (Message Authentication Code)
generated using the key KX . We further assume that each pair
of neighboring nodes has a pairwise key to authenticate its
mutual communication.

B. Threat Model

The synopsis diffusion framework on its own does not
include any provisions for security. To stop unauthorized nodes
from interfering in (or eavesdropping on) communications
among honest nodes, we can extend the aggregation frame-
work with standard authentication and encryption protocols.
So, we do not see any need to consider the attacks coming
from unauthorized nodes in the rest of this paper. However,
cryptographic mechanisms cannot prevent attacks launched by
compromised nodes because the adversary can obtain cryp-
tographic keys from the compromised nodes. Compromised
nodes might attempt to thwart the aggregate computation
process in multiple ways. A compromised node C which
happens to be an in-network data aggregator may leak (to the
adversary) the sensor readings (and sub-aggregates) which C
receives from C’s child nodes. Several researchers [24] already
proposed privacy-preserving aggregation algorithms, and we
do not consider this problem in the rest of this paper. Below
we discuss other potential problems and identify the scope of
this paper.

1. Falsifying the local value: A compromised node C can
falsify its own sensor reading with the goal of influencing
the aggregate value. There are three cases. Case (i):
If the local value of a honest node can be any value
(i.e. not bounded by the domain of application), then a
compromised node can pretend to sense any value. In this
case, there is no way to detect the falsified local value
attack (as also confirmed in [17]). We leave Case (i) out
of the scope of this paper. Case (ii): If the local value of a
honest node is bounded, and a compromised node falsifies
the local value within the bound, there is no solution for

detecting such an attack as in Case (i). We only observe
that in Case (ii), the impact of this attack is limited as
explained in the Appendix. Case (iii): The local value
of a honest node is bounded, and a compromised node
falsifies the local value outside the bound. Our proposed
algorithm does detect and guard against Case (iii) attack
scenario as discussed in Section V-D.

2. Falsifying the sub-aggregate: A compromised node C can
falsify the sub-aggregate which C is supposed to compute
based on the messages received from C’s child nodes. It
is challenging to guard against this attack, and addressing
this challenge is the main focus of this paper.

We assume that if a node is compromised, all the in-
formation it holds will be compromised. We conservatively
assume that all malicious nodes can collude or can be under
the control of a single attacker. We use a Byzantine fault
model, where the adversary can inject any message through
the compromised nodes. Compromised nodes may behave in
arbitrarily malicious ways, which means that the sub-aggregate
of a compromised node can be arbitrarily generated.

C. The Goal of the Paper

Our goal is to enable BS to obtain the ‘true’ estimate of
the aggregate (which BS would compute if there were no
compromised nodes) even in the presence of the attack. More
formally, goal (a) is to detect if B̂, the synopsis received at
BS is the same as the ‘true’ final synopsis B, and goal (b) is
to compute B from B̂ and other received information. Without
loss of generality, we present our algorithms in the context
of Sum aggregate. As Count is a special case of Sum, where
each node reports a unit value, these algorithms are readily
applicable to Count aggregate also.

D. The Attack Details

Note that BS estimates the aggregate based on the lowest-
order bit z that is ‘0’ in the final synopsis. So, a compromised
node C attempts to falsify its fused synopsis BC such that it
would affect the value of z. Node C simply inserts ‘1’s in one
or more bits in positions j, where z ≤ j ≤ η, into BC which
C broadcasts to its parents. Let B̂C denote the synopsis finally
broadcast by node C. Note that the compromised node C does
not need to know the true value of z; it can simply set some
higher-order bits to ‘1’ with the expectation that this will affect
the value of z computed by BS.

Since the synopsis fusion function is a bitwise Boolean OR,
the fused synopsis computed at any node which is at the higher
level than node C on the aggregation hierarchy will contain the
false contributions of node C. We observe that when a node X
computes the fused synopsis B̂X , X is not sure if B̂X contains
any false ‘1’s contributed by a compromised node lower in
the hierarchy. The observation is true also for the BS when it
computes the final synopsis B̂. We call the ‘1’ bits which are
present in B̂ but not in B as false ‘1’s in the rest of this paper.

Note that a compromised node C can introduce a false ‘1’
at bit j in B̂C by launching either of the following attacks.
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• Falsified sub-aggregate attack: C just flips bit j in B̂C

from ‘0’ to ‘1’—not having a local aggregate justifying
that ‘1’ in the synopsis B̂C.

• Falsified local value attack: C injects a false ‘1’ at bit j in
its local synopsis, QC. The falsified synopsis, Q̂C induces
bit j in B̂C to be ‘1’. Note that true local sensed value,
vC corresponds to QC.

An example of the falsified sub-aggregate attack is shown
in Figure 2. Node P is compromised i.e., it is an example
of node C in the above discussion. It has three child nodes
which are X , Y and Z, and P receives from them synopses B̂X ,
B̂Y , and B̂Z , respectively. Node P is supposed to aggregate its
local synopsis QP with the received synopses using the boolean
OR operation. That means, the fused synopsis of P should
be B̂P = QP||B̂X ||B̂Y ||B̂Z . However, in this example, malicious
node P increases the number of ‘1’s in B̂P by injecting false
‘1’s into B̂P without forging QP. The fabricated B̂P represents
a bogus sub-aggregate at P, which is higher than P’s true sub-
aggregate. Note that in another example (not shown in the
figure), P could launch falsified local value attack by adding
false ‘1’s in QP.

Fig. 2. Falsified Sub-aggregate Attack: Node P is supposed to aggregate
its local synopsis QP with the received synopses (from the child nodes X ,
Y , and Z) using the boolean OR operation. However, being malicious node
P injects false ‘1’s in its fused synopsis B̂P. The fabricated B̂P represents a
bogus sub-aggregate at P, which can be higher than P’s true sub-aggregate.

Let R̂ = ẑ−1, where ẑ be the lowest-order bit that is ‘0’ in
the received final synopsis B̂. Also, let R = z−1, where z is
the lowest-order bit that is ‘0’ in the correct final synopsis B.
Then BS’s estimate of the aggregate will be larger than the
correct estimate by a factor of 2R̂−R. So, a large amount of
error will appear in the final estimate of BS.

We also observe that even a single node can launch this
attack with a high rate of success because the use of multi-
path routing in the synopsis diffusion approach makes it highly
likely that the falsified synopsis will be propagated to BS. On
the other hand, it is very hard to launch an attack which results
in the aggregate estimated at BS being lower than the true
estimate. This is because a compromised node C’s changing
bit j in its fused synopsis, BC from ‘1’ to ‘0’ has no effect
if there is another node X that contributes a ‘1’ to bit j in its
local synopsis QX and hence to bit j in the final synopsis B.
To make this attack a success, the attacker must compromise
all of the possible paths from node X to BS so that X’s ‘1’
cannot reach BS, which is hard to achieve. If there is more

than one node which contributes to the same bit, then it is
even harder.

In the rest of this paper, we do not further discuss the
second type of attack (changing bit ‘1’ to ‘0’). We restrict
our discussion to the first type of attack (changing bit ‘0’ to
‘1’), which we call the false ‘1’ injection attack. That means
the goal of our attacker is only to increase the estimate of the
aggregate.

TABLE II
NOTATIONS USED IN DESCRIBING THE SECURE SUM PROTOCOLS

Symbol Meaning
N the total number of nodes
vX sensed value of node X
S the value of Sum aggregate

KX symmetric key shared between node X and the BS
MAC(KX ,M) message authentication code of

message M computed using key KX
X → Y X sends a message to Y
X →∗ X broadcasts a message to one hop neighbors

X →→∗ X broadcasts a message to the network
< a1 , a2 > concatenation of string a1 and a2

|| the bitwise OR operator
t number of compromised nodes
η the length of the synopsis

QX the local synopsis of node X
BX the fused synopsis of node X

if no attack is in the network
B̂X the fused synopsis actually computed by node X
B the final synopsis at BS if no attack is in the network
B̂ the final synopsis actually computed by BS

Notation A list of notations used in this paper is given in
Table II.

V. COMPUTING COUNT AND SUM DESPITE ATTACKS

In this section, we propose an attack-resilient protocol which
enables BS to compute the aggregate despite the presence of
the attack.

A. Introducing Authentication Mechanisms

Let us remind the reader that a compromised node X
launches the falsified sub-aggregate attack by inserting one
or more false ‘1’s in its fused synopsis. An obvious solution
to guard against this attack is as follows. BS broadcasts an
aggregation query message which includes a random value,
Seed, associated to the current query. In the subsequent
aggregation phase, along with the fused synopsis B̂X , each
node X also sends a MAC to BS authenticating its sensed
value vX . Node X uses Seed and its own ID to compute its
MAC. As a result, BS is able to detect and filter out any false
‘1’ bits inserted in the final synopsis B.

Specifically, if node X contributes to bits b1,b2, . . . ,bζ in
its local synopsis QX , it generates a MAC, M = MAC(KX ,L),
where KX is the key that node X shares with BS and the
content of L is < X ,vX ,b1,b2, . . . ,bζ,Seed >. Each node X
sends a message (L′,M) where L′ =< X ,vX ,b1,b2, . . . ,bζ >
might be needed by BS to regenerate the MAC for the
verification. We observe that this approach is not suitable for
a WSN as it requires O(N) MACs to be forwarded to BS. Our
attack-resilient algorithm presented below also uses similar
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MACs but reduces the total number of them. Throughout
this paper when we say a message contains a MAC, M, it
is understood that the corresponding L′ is attached to M. To
save space, we do not always explicitly mention this although
we take into account the extra byte overhead in the simulation
experiments.

Finally, in the rest of the paper, by the term false MAC
we refer to any string that does not correspond to the MAC
generation scheme described above. Note that a false MAC
can be associated either to a false ‘1’ or to a non-false ‘1’
bit. Specifically, a compromised node X can generate a false
MAC (in the context of computing the function MAC(KX ,L))
in four ways—(i) by using a false L, (ii) by using a false key
KX , (iii) by doing both of (i) and (ii) above, or (iv) by simply
sending a bogus array of bits. As BS re-executes the MAC
generation process for each received MAC, any false MAC
will be detected by BS.

We observe that, in general, BS can verify the final synopsis
if it receives one valid MAC for each ‘1’ bit in the synopsis.
In fact, to verify a particular ‘1’ bit, say bit i, BS does not
need to receive authentication messages from all of the nodes
which contribute to bit i. As an example, more than half of
the nodes are likely to contribute to the leftmost bit of the
synopsis (Property 4 of Sum synopsis), while to verify this
bit, BS needs to receive a MAC only from one of these nodes.

We now introduce the following notations. MX
i denotes

the MAC, generated by node X , authenticating the i-th bit
of its local synopsis QX . Note that MX

i is required to be
generated only if QX [i] = 1, i.e. there are no MAC for ‘0’
bits. Furthermore, for a particular i, Mi denotes one arbitrary
element of the following set: {MX

i | QX [i] = 1}, where elements
of the set are enumerated with respect to X . As an example, if
two nodes X1 and X2 set bit i to be ‘1’ in their local synopses,
then Mi corresponds to either MX1

i or MX2
i .

We assume that a node X’s message to one of its parents,
P, can be lost due to communication failure but it cannot
be partially or wrongly received—node-to-node authentication
and acknowledgement mechanisms can be used to enforce this
property. It implies that if BX reaches P, all of the MACs sent
by X also reaches P.

B. The Main Idea of the Protocol

If BS receives one valid MAC from a source node for each
‘1’ bit in the final synopsis, it is able to correctly compute
the aggregate. Before presenting our protocol, we describe a
simpler protocol: Each node X forwards one MAC for each
of the ‘1’ bits in B̂X , and BS will verify all of the ‘1’s in
the received final synopsis B̂. This protocol has the following
flaw.

Let there be a compromised node C which falsely injects a
few ‘1’s in its fused synopsis B̂C and sends a false MAC for
each of these false ‘1’ bit. Then, with some probability, these
false MACs may get selected at each hop before reaching BS.
If for a bit in final synopsis B, say bit i, BS does not receive
a valid MAC but only false MACs, then BS cannot determine
the real state of bit i. In fact, this can be the consequence
of either of the following two scenarios: (i) B[i] = 0 and a

false MAC has been generated; (ii) a source node (possibly
a few hops away from BS) has sent a valid MAC for bit i
(B[i] = 1, indeed), but this MAC lost the race to false MACs
in the random selection procedure en-route BS.

However, we observe that the probability of this ‘undecid-
ability’ problem to arise is not the same for all of the bits.
In fact, a false MAC is not equally likely to get selected
for all of the bits because the number of source nodes that
contribute to a bit (hence, the number of valid MACs) varies
with the bit position. Property 4 of Sum synopsis (discussed in
Section III-B) says that the number of source nodes increases
exponentially from the right to the left. As an example,
approximately, 1/φ =1.27 nodes are expected to contribute
to bit r, 2/φ =2.54 nodes are expected to contribute to bit
(r−1), and so on, where r is the expected length of the prefix
of consecutive ‘1’s in the final synopsis B. So, if the number of
compromised nodes, t, is small compared to the total number
of nodes, N, we expect that BS will receive a valid MAC for
the left bits far from bit r, but may not receive a valid MAC
for the other bits.

Considering the above observation, we design an attack-
resilient protocol having two phases as follows:
• In phase one, we run the simple protocol described above.

That is, each node X forwards one randomly selected
MAC for each ‘1’ bit in B̂X . At the end of this phase, BS
verifies the received MACs. The ‘1’s in B̂ for which no
valid MACs have been received by BS are reset to ‘0’.
Let B̄ represent the final synopsis at BS after the above
filtering process is performed. Analyzing B̄, we make an
estimate, r̂ of the expected prefix length, r of B. We will
show later that r̂ is a lower bound of r.

• In phase two, nodes which contribute to bit r̂ or to the bits
to the right of bit r̂ send a MAC to BS. In this phase, no
random selection technique is employed in forwarding
MACs—each node forwards all of the received MACs
toward BS.

We will show later that, given a deviation of r̂ from r
to the left, the number of MACs (hence the communication
overhead) required in the second phase is exponential of this
deviation. The main challenge is how to get a good estimate,
r̂ in the first phase. We will show that in the presence of t
compromised nodes, the deviation can be kept within O(log2 t).
In this case, the number of MACs transmitted (per synopsis) in
the second phase will be O(t), i.e. proportional to the number
of compromised nodes, t.

C. The Operation Details of the Protocol

We stress that like the original synopsis diffusion approach
our attack-resilient protocol computes multiple synopses (say
m) in parallel. Multiple synopses are computed to reduce the
approximation error in the estimate of the aggregate [7], [8].
However, for the sake of clarity, we below present our protocol
only considering a single synopsis, which should be executed
in the same way for each synopsis. Table III introduces a few
additional notations which we use to describe this protocol.

As in the original synopsis diffusion algorithm, during the
query distribution phase nodes arrange themselves into a ring
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topology around BS. Upon receiving the query message, the
nodes aggregate their local synopses with their child nodes’
synopses and send some authentication messages to BS in the
following two phases.

TABLE III
NOTATIONS TO DESCRIBE THE ATTACK-RESILIENT PROTOCOL.

Symbol Meaning
B the final synopsis if no attack is launched
Bi the i-th bit of synopsis B

B[i] the value of the i-th bit of synopsis B
R the length of the prefix of all ‘1’s in B
r the expected value of R
r̂ BS’s estimate of r after phase one
B̂ the final synopsis received by BS in phase one

in the presence of false MAC injection attack
R̂ the length of the prefix of all ‘1’s in B̂
B̄ the final synopsis at BS after false MACs, if any are

filtered in phase one
R̄ the length of the prefix of all ‘1’s in B̄
B′ the final synopsis at BS after phase two terminates
R′ the length of the prefix of all ‘1’s in B′

1) Phase One: First, BS broadcasts a query message as
follows:

BS→→∗ : 〈“PhaseOne”,”Sum”,Seed,η〉,

where “PhaseOne” is a flag indicating that phase one is going
to begin, and η is the synopsis length.

In this phase, nodes basically execute the original synop-
sis diffusion algorithm with additional transmission of some
MACs. In particular, each node X randomly selects one MAC
for each ‘1’ bit in synopses B̂X from the MACs received from
its child nodes (possibly including X’s own MAC). X forwards
the selected MACs to its parents. The message broadcast by
X to its parent nodes is as follows:

X →∗ : 〈 B̂X , {Mi | B̂X [i] = 1,1≤ i≤ η} 〉,

where B̂X represents the fused synopsis at node X , Mi repre-
sents a MAC corresponding to B̂X [i].

We require a restriction on the number of MACs that a
node can forward. In fact, if node X sends an aggregation
message (synopses B̂X and corresponding MACs) to its parent
node Y , Y does not accept more than one MAC for each ‘1’
bit in BX . This assumption can be enforced by employing
authentication techniques in the communication procedure
among neighboring nodes.

After all of the MACs have been received by BS, for any
‘1’ bit, say bit B̂i, in the synopses B̂ for which no valid MAC
has been received, BS resets B̂i to ‘0’. The resulting set of
synopses after this filtering process has been performed are
denoted by B̄, respectively. Now, BS makes an estimate of the
expected length of prefix of all ‘1’s, r using B̄. Let r̂ be the
estimate of r. We observe that there is one factor which could
possibly deviate the estimate r̂ from r: injection of false MACs
by the adversary—which can cause BS not receiving any valid
MAC for a few ‘1’ bits near bit r in synopsis B. We observe
that this factor could contribute to a deviation to the left only
(i.e. making r̂ less than r), as shown later (in Section V-D).

2) Phase Two: BS requests the nodes which contribute to
bits i, i > r̂, in the synopsis to send back the corresponding
MACs. The message sent by BS is as follows:

BS→→∗ : 〈“PhaseTwo”, r̂〉,

where “PhaseTwo” is a flag indicating that phase two is going
to begin.

After receiving the request from BS, each node X broadcasts
to its parents the MACs, {Mi | r̂ < i ≤ η}. Unlike the first
phase, now no MAC is dropped by the intermediate nodes,
i.e, each node X forwards to X’s parents all of the MACs X
received from its child nodes.

After BS receives the MACs, any bit Bi, i > r̂ for which a
valid MAC is received is set to ‘1’. The resulting synopsis is
denoted by B′.

3) An Example: Let us illustrate the critical points of the
above protocol with the same example as depicted in Figure 2.
Node P has 3 child nodes X , Y , and Z. In phase one, each
node is supposed to send (to its parent) its fused synopsis along
with one randomly selected MAC for each ‘1’ bit. So, X sends
111101010000 as its fused synopsis, and a few MACs such
as Mi, 1≤ i≤ 4, M6, and M8. Note that X may have received
some of these MACs from its child nodes and not sure if some
of them are false MACs. Likewise, Y sends 111110000000,
Mi, 1 ≤ i ≤ 5, and Z sends 111000100000, Mi, 1 ≤ i ≤ 3,
and M7. If P is not malicious, then P should compute its
fused synopsis as 111111110000 , and should randomly select
one MAC for each ‘1’ bit from the received MACs. P should
forward Mi, 1 ≤ i ≤ 8. However, if P is malicious, it injects
false ‘1’s, and forwards 111111111111 (as its fused synopsis),
and Mi, 1 ≤ i ≤ 12, where (at least) M9, M10, M11, and M12
are false MACs. At the end of phase one, BS will be able
to detect that M9, M10, M11, and M12 are false MACs if no
node sent a valid MAC for these four bits. Furthermore, let us
assume that for the 8-th bit all MACs (e.g. one was sent by
X) received by BS are false. Then, BS’s estimate r̂ can be 7
and it requests the network to start the next phase. In phase
two, each node which generates valid MAC for bit 8, 9, 10,
11 or 12 sends such MACs, and all of these MACs should
reach BS (no random selection of MACs en-route), and BS
can determine the correct status of each bit of the synopsis.

D. Correctness and Security Analysis

In particular, we prove that BS can correctly infer the values
of all of the bits in the synopsis. In other words, we show that
when this protocol terminates, BS has already received at least
one valid MAC for each ‘1’ bit of the synopsis.

1) Correctness of the Protocol Phases:
a) Phase One: There exists some room for the adversary

to shift the estimate, r̂ from the true value of r. However, below
we show that only the left shift is possible.

Claim V.1. After phase one, BS’s estimate of the prefix-length
(of ‘1’ bits in the synopsis) r̂ cannot be higher than the true
prefix-length r, i.e. r̂ ≤ r.

Proof: By contradiction: Say, if possible, r̂ > r. By
definition of r, bit (r+1) in the true synopsis is ‘0’, i.e. there
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is no node in the network, which contributes to bit (r + 1)
and sends a valid MAC to BS. So, the only possibility is a
compromised node generated a false MAC (and sent to BS),
and BS was not able to detect the falsehood of this MAC. This
is not possible according to Lemma V.3. Hence, this Claim is
proved.

b) Phase Two: This phase addresses the above deviation
(of r̂ from r) by validating bits to the right of bit r̂ to securely
obtain the position of bit r.

Claim V.2. After phase two ends, the finally computed synop-
sis B′ at BS is correct, i.e. the prefix-length of B′ is same as
the true prefix-length r.

Proof: In phase two, nodes do not employ a random
selection procedure in forwarding MACs; each node forwards
to its parent nodes all of the received MACs. We assume that
(due to the use of multi-path routing) at least one MAC for
each bit will reach BS. So, combining the contribution of phase
one and phase two, BS is able to correctly determine all of
the bits B[i], i≥ 1 for the synopsis.

Note that strictly speaking, to get the above results, we make
assumptions that there exists at least one communication path
from each node to BS and it is true during both the phases.
We stress that there can be an isolated node, but then its
value should not be considered in the aggregate (e.g. Sum)’s
definition; so, this scenario does not pose any challenge to
the correctness of our protocol. Below we observe that the
above assumption holds in a practical network. Let α be the
packet loss rate and each node has at least f parents in the
aggregation hierarchy. Then, the probability of node X’s MAC
to reach BS is greater than (1−α f )

g, where node X is g
hops away from BS. As an example, if α = 0.1, f = 3, and
g = 5, then this probability is more than 99.5%. Furthermore,
a compromised node C’s dropping a MAC generated by node
X which contributes a ‘1’ to bit Bi has no effect if there is
another node Y which also contributes a ‘1’ to bit Bi and hence
sends its own MAC. To stop all of the MACs corresponding
to bit Bi from reaching BS, the attacker has to compromise
all of the possible paths from all of these contributing nodes
to BS, which is hard to achieve. We note that there are bits
in the synopses to which only one or two nodes contribute.
However, it is very hard for the attacker to predict in advance
which nodes will be contributing to these particular bits. As
a result, our protocol correctly works even in the presence of
the attack.

2) Security Analysis: We first present an important obser-
vation as Lemma V.3, which acts as the basis of our analysis.

Lemma V.3. The adversary cannot generate a MAC associ-
ated to a false ‘1’ bit in B̂ which BS will not be able to detect as
false. (We assume that the brute-force MAC generation attack
does not succeed.)

Proof: Recall from Section V-A that if node X con-
tributes to bits b1,b2, . . . ,bζ in its local synopsis QX , it
generates a MAC, M = MAC(KX ,L), where KX is the key
that node X shares with BS and the format of L is <

X ,vX ,b1,b2, . . . ,bζ,Seed >. Each node X appends L′ with M
where L′ =< X ,vX ,b1,b2, . . . ,bζ >.

Let us consider that a compromised node X’s MAC, M
reaches BS. First, we observe that use of MACs ensures that
node X cannot inject a MAC on behalf of another node without
being detected. We also observe that M cannot vouch for a
false ‘1’ at bit i because of the following reason. To vouch for
a false ‘1’ at bit i, i has to be appended in the bit list in L. As a
result, BS will detect its falsity after re-executing the Synopsis
Generation Algorithm (Algorithm 2) with parameters as X and
the sensed value, vX . Note that using the same Seed ensures
that in the above process BS generates exactly same synopsis
as QX . So, the only option for X to successfully inject a false
‘1’ is to modify vX (i.e. launching the falsified local value
attack).

Lemma V.3 implies that a compromised node X cannot
successfully inject a false yet undetected ‘1’ bit via falsified
sub-aggregate attack—to inject such a ‘1’, X has to launch
falsified local value attack. In fact, the maximum error the
compromised node X can inject (without being detected) to
the final aggregate is (vmax−vX ), where vX is X’s actual local
value and vmax the maximum possible local value. Refer the
Appendix for more details.

We assume that no compromised node is interested in
sending false MACs in phase two. Note that if a compromised
node does so, this attack would have no impact in corrupting
the aggregate at BS. This attack can only jam the network with
bogus packets, i.e. can effectively create a denial-of-service
situation, which is out of scope of this paper.

E. Performance Analysis

The communication overhead of phase one does not depend
on the number of compromised nodes. The worst case per-
node communication burden is to forward l MACs, where
l is the maximum number of ‘1’s in the synopsis. From
property 1 of Sum synopsis (Section III-B), we know that
l is approximately log2 S, S being the Sum. That means the
communication overhead per node is O(log2 S).

On the other hand, the communication overhead of phase
two is determined by how close the estimate r̂, obtained in
phase one, is to the real value of r.

First, we present Lemma V.4 and Lemma V.5, which we
will use to obtain the subsequent results.

Lemma V.4. Let a synopsis be computed to determine the
Sum using the FM algorithm [15], where S is the value of the
Sum. Let r be the expected value of R in the synopsis B at BS.
The probability that B[i] = 0, with r−a≤ i≤ r+a and a≥ 0,
is:

Pr[B[i] = 0]≈ e
− (1/φ)

(2i−r) ,

where φ = 0.7735.

Proof:
From Property 2 of Sum synopsis (ref. Section III-B), we

see that r is log2 (φS). As observed in Section III-B, the
function CT () in SGsum algorithm is invoked S times in total
considering synopsis generation of all nodes. A bit j in the
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final synopsis B is ‘0’ only if none of the above S invocations
of CT () returns j. So, we see that:

Pr[B[ j] = 0] = (1− 1
2 j )

S.

To calculate the probability of r-th bit2 being ‘0’, we
substitute j with r = log2 (φS) and we get:

Pr[B[r] = 0] = (1− 1
2r )

S = (1− 1
φS

)S ≈ e−
1
φ .

In general, for the i-th bit where r− a ≤ i ≤ r+ a,a ≥ 0, we
get:

Pr[B[i] = 0] = (1− 1
2i )

S = (1− 1
2i−r2r )

S = (1− 1
2i−rφS

)S ≈ e
− (1/φ)

(2i−r ) .

We observe from Lemma V.4: The probability that B[i] = 0
is determined by only the distance of the i-th bit from the
r-th bit, where the value of r is log2 (φS). Furthermore, in
Lemma V.5 below, we observe that the bits close (left or
right) to bit r or far to the right of bit r can be considered as
independent.

Lemma V.5. Let r be the expected value of R in the synopsis
B at BS. Let the value of Sum be S. The value (‘0’ or ‘1’) of
any two bits Bi and Bi′ , with i ≥ (r− b), i′ ≥ (r− b), i 6= i′,
b << log2S are independent.

Proof: By construction of SGsum algorithm (ref. Sec-
tion III-B), we get the following two relations:

Pr[B[i] = 0] = (1− 1
2i )

S (2)

Pr[B[i] = 0,B[i′] = 0] = (1− 1
2i −

1
2i′ )

S (3)

Then, by basic rules of probability, we have:

Pr[B[i] = 0 | B[i′] = 0] =
Pr[B[i] = 0,B[i′] = 0]

Pr[B[i′] = 0]
=

(1− 1
2i − 1

2i′ )
S

(1− 1
2i′ )

S
(4)

From Relation 2 and Relation 4, we get:

Pr[B[i] = 0|B[i′] = 0]
Pr[B[i] = 0]

=
(1− 1

2i − 1
2i′ )

S

(1− 1
2i′ )

S(1− 1
2i )S

=(1− 1
(2i−1)(2i′ −1)

)S

(5)
So, we have:

Pr[B[i] = 0|B[i′] = 0]
Pr[B[i] = 0]

≈ (1− 1
2i2i′ )

S≈ e−
S

2i2i′ ≤ e
− S

(
φS
2b )(

φS
2b )

= e
− 22b

φ2S ≈ 1

(6)

We remind the reader that a practical attack can only move
the estimate r̂ to the left. We present Claim V.6 to quantify
the deviation.

Claim V.6. Let r̂ be the estimate of the position of bit r after
phase one, and let t denote the number of compromised nodes
in the network. There is a δa such that Pr[(r− r̂)> δa]≈ 0.

2Strictly speaking, as r is a real number, ‘r-th bit’ is not a well-defined bit.
However, as we are making an average case analysis, we refer to ‘bit r’ for
ease of exposition.
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4/φ 2/φ 1/φt...................

.................... number of false MACs

number of valid MACs

r

1

φr − log(   t)

Fig. 3. The Synopsis at BS and a High-level View of the Random Selection
Procedure in MACs Forwarding—The number of contributing nodes and
hence the number of valid MACs varies with the bit position of the synopsis,
e.g. for the r-th bit this number is 1

φ
, and so on. The maximum number of

false MACs is t for any bit when t nodes attack.

Proof: We now consider the attack in which compromised
nodes inject false MACs in phase one. Recall that we enforce a
restriction on the number of MACs that a node can inject into
the network. In fact, if node X sends an aggregation message
(synopsis B̂X and corresponding MACs) to node Y , Y does not
accept more than one MAC for each ‘1’ bit in B̂X .

Without loss of generality, we focus on one particular ‘1’
bit, say Bi i.e., the i-th bit in synopsis B. Let us assume that
there are s nodes in the network which contribute to this bit
and hence each of these s nodes sends a MAC toward BS. On
the other hand, if there are t compromised nodes present in
the network, then there can be at most t injected false MACs
for this bit. We can consider that these s valid MACs and t
false MACs compete with one another in the random selection
procedure at the intermediate hops, and finally, only one MAC
reaches BS. We assume that these s good nodes and t bad
nodes are randomly distributed in the network. So, we can
consider that a valid MAC finally reaches BS with probability
s/(s+ t).

Recall that the number of contributing nodes varies expo-
nentially with the bit position—for the r-th bit, the expected
number of contributing nodes is 1/φ, for the (r−1)-th bit 2/φ,
and so on. Let ra = r− log(φt). For bit ra− j, the expected
number of contributing nodes is 2 jt (as illustrated in Figure 3
). Hence, the probability that a valid MAC reaches BS for this
bit is p(ra− j) = (2 jt)/(2 jt + t) = (2 j)/(2 j + 1). We observe
that this probability is approximately 1 while j > 4. Hence,
this claim is proved.

As a special case, we see that for δa = logφt+1, Pr[r̂ < (r−
δa)] < 0.01. That is, even during the attack the estimate r̂ of
phase one is no less than r− log2 φt−1 with high probability. It
implies that by Property 4 of Sum synopsis (ref. Section III-B)
at most O(t) MACs are expected to be transmitted in total over
the network in phase two.

F. Comparing with Existing Approaches

As discussed in Section II-B, the attestation phase of SDAP
algorithm [10] can be used to filter out the false sub-aggregates
injected by the compromised nodes. In addition, a sampling-
based attack resilient algorithm has been recently proposed
in [11]. Moreover, our previous paper presented an attack-
resilient aggregation algorithm [13] in the synopsis diffusion
framework. To the best of our knowledge, these are the only
works present in the literature which address the problem
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of computing aggregates despite the adversarial interference.
Table IV presents a comparative study of our attack-resilient
computation protocol (Section V-C), our prior work [13],
SDAP [10], and sampling-based approach [11].

TABLE IV
COMPARING THE ATTACK-RESILIENT PROTOCOLS

Protocols Latency Communica- Number of
tion overhead keys stored

in each node
Our current 2 epochs max(O(m logS),O(mt)) O(1)

protocol
[13] O( logχ

w′′ ) O(m ·2w′′ ) O(1)
epochs
(w.h.p.)

SDAP by 2 epochs O(N) O(1)
[10] (worst case)

Sampling O(logN) O( 1
ε2 log 1

δ
logS) O(logS)

-based [11] epochs

Latency: Our current attack-resilient protocol takes 2 epochs
3, and with the attestation phase included, SDAP [10] takes the
same number of epochs. The worst case latency incurred in
[13] is O( logχ

w′′ ) in most of the cases, where χ is the ratio of the
upper bound of Sum to the actual value and w′′ is the size of
the sliding window used. Note that if the upper bound of Sum
is loose, then χ can be large and in that case [13] can incur
high latency. The sampling-based protocol [11] takes O(logN)
epochs to complete, where N is the network size.

Communication Overhead: In SDAP, the communication
overhead of the attestation phase depends on the topology of
the network; for an irregular network, the worst case node
congestion is O(N). In our current protocol, a node needs to
forward max(O(logS),O(t)) MACs in the worst case for each
synopsis to compute Sum, S. To be fair to other protocols,
here we report the total communication overhead which is
incurred in computing all the synopses: a node may need to
forward max(O(m logS),O(mt)) MACs where m is the number
of synopses used. The worst case node congestion in [13]
is O(m · 2w′′) where w′′ is the sliding window size. The per-
node communication overhead in [11] is O( 1

ε2 log 1
δ

logS) to
produce an (ε,δ)-approximate estimate of Sum, S. To produce
a similarly accurate estimate of Sum, the value m in our
algorithms should be O( 1

ε2 log 1
δ
) as analyzed in [9].

Number of Stored Keys: For [11], each node has to store
O(logS) symmetric keys which are shared with the base
station. On the other hand, for other protocols, each node
stores O(1) keys.

Robustness to Message Loss: Communication loss may
disrupt SDAP [10] algorithm. In contrast, our current protocol
and that in [13] or [11] are robust against loss because they
use multi-path routing schemes.

VI. SIMULATION RESULTS

The simulation study examined the correctness and perfor-
mance of our algorithm. The evaluation is done based on
metrics, such as closeness of the simulation results to the

3As defined in the prior work [5], an epoch represents the amount of time a
message takes to reach BS from the farthest node on the aggregation hierarchy.
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Fig. 4. Impact of Compromised Nodes on the Deviation of Phase One’s
Estimate, r̂ from r (true prefix length of ‘1’s)

theoretical predictions and communication overhead. Note that
we do not need to examine the latency of the protocol as it is
always two epochs.

A. Simulation Framework

We used the TAG simulator [5] as the basic platform on
which our simulations were written. We reused some of the
modules provided by Considine et al. [7], which simulate
their multi-path aggregation algorithms in the TAG simulator
environment. Moreover, we had to extensively expand most of
their modules and add a few new modules. In particular, we
had to enable two-phase-wide communications, and we had
to add the security functionality (i.e. attack resilience). As the
basic network topology, we used a 50× 50 grid with 2500
sensor nodes, where one sensor is placed at each grid point and
BS is at the center of the grid, as in [7]. The communication
radius of each node is

√
2 unit, allowing the nearest eight grid

neighbors to be reached.
We assigned a unique ID to each sensor, and each sensor

reading was a random integer uniformly distributed in the
range of 0 to 100 units. BS sets the synopsis (bit vector)
total length as 24 bits. We used the method of independent
replications as our simulation methodology. If not mentioned
otherwise, each simulation experiment was repeated 300 times
with a different seed. We computed the 99% confidence
intervals; unless reported explicitly, the confidence intervals
are within ±2% of the reported value.

Some of the experiments, as discussed later, consider that
a few (say t) nodes among the node population are compro-
mised, and the compromised nodes are randomly distributed
in the grid. In each run of the experiment, the compromised
nodes are randomly selected, but they do not change across the
two phases of any run. In phase one, each compromised node
invokes false MAC injection attack to the worst degree, i.e. it
forwards a false MAC for each bit position (of the synopsis) to
its parent nodes. To study the worst case performance of our
algorithm, we consider that the compromised nodes behave as
normal nodes in phase two.

B. Results and Discussion

Error in estimate r̂. We recall from Section V that the per-
formance of this protocol primarily depends on the looseness
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of the estimate, r̂ obtained in phase one. Furthermore, the
maximum deviation in estimate r̂ from correct r (which is
obtained in phase two) depends on how many compromised
nodes participate in the false MAC injection attack during
phase one. The analysis in Section V-E states that the de-
viation obeys the following inequality with high probability,
(r− r̂) ≤ log2 φt + 1 where t is the number of compromised
nodes. For any particular value of t (0, 25, 50, 100, 200,
and 400), we simulated the false MAC injection attack during
phase one 300 times. We measured (r− r̂) for each t, and we
observed that (r− r̂) was low as expected. Figure 4 illustrates
how this deviation (r− r̂) varies with t. The 99% confidence
intervals are within ±10% of the reported value. Moreover,
in separate experiments (not shown in the figure), we also
verified that the amount of the deviation does not significantly
change with different network sizes (varied across 900, 1600,
2500, and 3600) if t remains same (at 50).
Communication overhead. We recall that during phase one
each node needs to forward at most η MACs, where η is the
length of the synopsis. The communication overhead on a node
in phase two depends upon how many nodes contribute to bits
to the right of bit r̂ in the synopses because each of these nodes
send a MAC to the BS. Our analysis in Section V-E shows the
total number of MACs sent in the network during phase two
is likely to be O(t). Figure 5 plots the number of MACs sent
during phase two as a function of the number of compromised
nodes, t. The 99% confidence intervals are within ±20% of the
reported value. We observe that the number of MACs increases
linearly with t, which confirms our analysis. To report the
total (over phase one and phase two) per-node communication

overhead, we include Figure 6 which illustrates how this (in
bits) varies with t. We assume that each MAC is of size 32 bits
and it is sent along with the generator node Id of length 16 bits.
Furthermore, in separate experiments (not shown in the figure),
we observed that the per-node communication overhead does
not increase with the network size (varied across 900, 1600,
2500, and 3600), which shows that our algorithm is scalable.

VII. CONCLUSION

We discussed the security issues of in-network aggregation
algorithms to compute aggregates such as predicate Count
and Sum. In particular, we showed the falsified sub-aggregate
attack launched by a few compromised nodes can inject
arbitrary amount of error in the base station’s estimate of
the aggregate. We presented an attack-resilient computation
algorithm which would guarantee the successful computation
of the aggregate even in the presence of the attack.

APPENDIX

One can be interested to know the degree of damage
inflicted by the falsified local value attack. Below we discuss
this.

Lemma VII.1. The maximum error the compromised node X
can inject (without being detected) to the final aggregate is
(vmax− vX ), where vX is X’s actual local value and vmax the
maximum possible local value.

Proof: We notice that in Algorithm 2, a node X runs
the while loop vX times. Over these runs, once a bit is set
to ‘1’, it is never reset. This implies that only by increasing
the value of vX , node X gets a chance to inject a false ‘1’.
Recall that injecting ‘1’s in the synopsis results in an increase
in the value of the final aggregate. So, X can contribute the
maximum error to the final aggregate if X generates its local
synopsis QX considering vX = vmax.

Lemma VII.1 implies that the maximum total error t com-
promised nodes can inject (without being detected) to the final
aggregate is at most t (̇vmax−vmin), where vmin is the minimum
sensed value.
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