
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 1

RITAS: Services for Randomized Intrusion

Tolerance
Henrique Moniz, Student Member, IEEE, Nuno Ferreira Neves, Member, IEEE, Miguel Correia, Member, IEEE,

and Paulo Verissimo, Fellow, IEEE

Abstract— Randomized agreement protocols have been around
for more than two decades. Often assumed to be inefficient
due to their high expected communication and computation
complexities, they have remained overlooked by the community-
at-large as a valid solution for the deployment of fault-tolerant
distributed systems. This paper aims to demonstrate that ran-
domization can be a very competitive approach even in hostile
environments where arbitrary faults can occur. A stack of
randomized intrusion-tolerant protocols is described and its
performance evaluated under several settings in both LAN
and WAN environments. The stack provides a set of relevant
services ranging from basic communication primitives up through
atomic broadcast. The experimental evaluation shows that the
protocols are efficient, especially in LAN environments where
no performance reduction is observed under certain Byzantine
faults.

Index Terms— Intrusion Tolerance, Byzantine Agreement,
Randomized protocols, Performance evaluation.

I. INTRODUCTION

MODERN society has been growing increasingly depen-

dent on networked computer systems. The availability,

confidentiality, and integrity of data and services are crucial

attributes that must be enforced by real-world distributed sys-

tems. The typical approach to secure these systems has been

one of almost complete prevention, i.e., to avoid successful

attacks, or intrusions, at all cost. Once a breach ocurrs, manual

intervention is necessary to restore system correctness.

A different approach to deal with attacks has been gaining

momentum within the scientific community - intrusion toler-

ance. Arising from the intersection of two classical areas of

computer science, fault tolerance and security, its objective is

to guarantee the correct behavior of a system even if some

of its components are compromised and controlled by an

intelligent adversary [1], [2], [3].

Within this domain of fault- and intrusion-tolerant dis-

tributed systems, there is an essential problem: consensus. This

problem has been specified in different ways, but basically

it aims to ensure that n processes are able to propose some

values and then all agree on one of these values. Consensus has

been shown to be equivalent to fundamental problems, such

as state machine replication [4], group membership [5], and

atomic broadcast [6], [7]. Hence, the relevance of consensus is

noteworthy because it is a building block of several important

distributed systems services. For example, to maintain data

This work was partially supported by the EU through NoE IST-4-026764-
NOE (RESIST) and project IST-4-027513-STP (CRUTIAL), and by the
FCT through project POSI/EIA/60334/2004 (RITAS) and the Large-Scale
Informatic Systems Laboratory (LASIGE).

consistency in a replicated database, some form of consensus

between the sites is needed. Synchronization of clocks, leader

election, or practically any kind of coordinated activity be-

tween the various nodes of a distributed system can be built

using consensus. Unsurprisingly, the consensus problem has

received a lot of attention from the research community.

Consensus, however, is impossible to solve deterministically

in asynchronous systems (i.e., systems where there are no

bounds to the communication delays and computation times) if

a single process can crash (also known as the FLP result [8]).

This is a significant result, in particular for intrusion-tolerant

systems, because they usually assume an asynchronous model

in order to avoid time dependencies. Time assumptions can

often be broken, for example, with denial of service attacks.

Throughout the years, several researchers have investigated

techniques to circumvent the FLP result. Most of these

solutions, however, required changes to the basic system

model, with the explicit inclusion of stronger time assumptions

(e.g., partial synchrony models [9], [10]), or by augmenting

the system with devices that hide in their implementation

these assumptions (e.g., failure detectors [11], [12], [13] or

wormholes [14]). Randomization is another technique that

has been around for more than two decades [15], [16]. One

important advantage of this technique is that no additional

timing assumptions are needed. To circumvent the FLP re-

sult, randomization uses a probabilistic approach where the

termination of consensus is ensured with probability of 1.

Although this line of research produced a number of important

theoretical results, including several algorithms, randomization

has been historically overlooked, in what pertains to the

implementation of practical applications, because it has usually

been considered to be too inefficient.

The reasons for the assertion that “randomization is in-

efficient in practice” are simple to summarize. Randomized

consensus algorithms, which are the most common form

of these algorithms, usually have a large expected number

of communication steps, i.e., a large time-complexity. Even

when this complexity is constant, the expected number of

communication steps is traditionally significant even for small

numbers of processes, when compared, for instance, with

solutions based on failure detectors1. Many of those algorithms

also rely on public-key cryptography, which increases the

performance costs, especially for LANs or MANs in which

1An exception is the stack of randomized protocols proposed by Cachin et
al. [17], [18], which terminate in a low expected number of communication
steps. They, however, depend heavily on public-key cryptography which may
seriously affect their performance [19].



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 2

Atomic BroadcastVector ConsensusMulti�valued ConsensusBinary ConsensusReliable Broadcast Echo BroadcastTCPIPSec AH
Application Applicationswishing touse RITASRITASprotocolsuiteStandardInternetServices

Fig. 1. The RITAS protocol stack.

the time to compute a digital signature is usually much higher

than the network delay.

Nevertheless, two important points have been chronically

ignored. First, consensus algorithms are not usually executed

in oblivion, they are run in the context of a higher-level

problem (e.g., atomic broadcast) that can provide a friendly

environment for the “lucky” event needed for faster termina-

tion (e.g., many processes proposing the same value can lead to

a quicker conclusion [20]). Second, for the sake of theoretical

interest, the proposed adversary models usually assume a

strong adversary that completely controls the scheduling of the

network and decides which processes receive which messages

and in what order. In practice, a real adversary does not possess

this ability, but if it does, it will probably perform attacks in a

distinct (and much simpler) manner to prevent the conclusion

of the algorithm – for example, it can block the communication

entirely. Therefore, in practice, the network scheduling can be

“nice” and lead to a speedy termination.

This paper describes the implementation of a stack of

randomized intrusion-tolerant protocols and evaluates their

performance under different fault loads. One of the main

purposes is to show that randomization can be efficient and

should be regarded as a valid solution for practical intrusion-

tolerant distributed systems.

This implementation is called RITAS which stands for

Randomized Intrusion-Tolerant Asynchronous Services. At the

lowest level of the stack (see Figure 1) there are two broadcast

primitives: reliable broadcast and echo broadcast. On top of

these primitives, the most basic form of consensus is available,

binary consensus. This protocol lets processes decide on a

single bit and is, in fact, the only randomized algorithm of

the stack. The rest of the protocols are built on top of this

one. Building on the binary consensus layer, multi-valued

consensus allows the agrement on values of arbitrary range.

At the highest level there is vector consensus, which lets

processes decide on a vector with values proposed by a

subset of the processes, and atomic broadcast, which ensures

total order. The protocol stack is executed over a reliable

channel abstraction provided by standard Internet protocols

– TCP ensures reliability, and IPSec guarantees cryptographic

message integrity [21]. The protocols in RITAS have been

previously described in the literature [22], [23], [7]. The

implemented protocols are, in most cases, optimized versions

of the original proposals that have significantly improved the

overall performance.

The protocols of RITAS share a set of important structural

properties. (1) They are asynchronous in the sense that no

assumptions are made on the processes’ relative execution

and communication delays, thus preventing attacks against

assumptions in the domain of time (a known problem in some

protocols that have been presented in the past). (2) They attain

optimal resilience, tolerating up to f = ⌊n−1

3
⌋ malicious

processes out of a total of n processes, which is important

since the cost of each additional replica has a significant

impact in a real-world application. (3) They are signature-

free, meaning that no expensive public-key cryptography is

used anywhere in the protocol stack, which is relevant in

terms of performance since this type of cryptography is several

orders of magnitude slower than symmetric cryptography. (4)

They take decisions in a distributed way (there is no leader),

thus avoiding the costly operation of detecting the failure of

a leader, an event that can considerably delay the execution.

The paper has two main contributions: (1) it presents the

design and implementation of a stack of randomized intrusion-

tolerant protocols, discussing several optimizations – to the

best of our knowledge, the implementation of a stack with

the four structural properties above is novel; (2) it provides a

detailed evaluation of RITAS in both LAN and WAN settings,

showing that it has interesting latency and throughput values.

II. RELATED WORK

Randomized intrusion-tolerant protocols have been around

since Ben-Or’s and Rabin’s seminal consensus protocols [15],

[16]. These papers defined the two approaches that each of

the subsequent works followed. Essentially all randomized

protocols rely on a coin-tossing scheme that generates random

bits. Ben-Or’s approach relies on a local coin-toss, while

in Rabin’s shares of the coins are distributed by a trusted

dealer before the execution of the protocol and, therefore, all

processes see the same coins.

Although many randomized asynchronous protocols have

been designed throughout the years [15], [16], [22], [24], [25],

[26], only recently one implementation of a stack of random-

ized multicast and agreement protocols has been reported,

SINTRA [18]. These protocols are built on top of a binary

consensus protocol that follows a Rabin-style approach, and

in practice terminates in one or two communication steps [17].

The protocols, however, depend heavily on public-key cryp-

tography primitives like digital and threshold signatures. The

implementation of the stack is in Java and uses several threads.

RITAS uses a different approach, Ben-Or-style, and resorts

only to fast cryptographic operations such as hash functions.

Randomization is only one of the techniques that can be

used to circumvent the FLP impossibility result. Other tech-

niques include failure detectors [12], [27], [28], [20], partial-

synchrony [9] and distributed wormholes [29], [14]. Some of

these techniques have been employed in the past to build other

intrusion-tolerant protocol suites.

The first evaluation of a set of asynchronous Byzantine

protocols (reliable and atomic broadcast) was made for the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 3

Rampart toolkit [23]. The reliable broadcast is implemented

by Reiter’s echo broadcast (see Section IV-G) and the order

is defined by a leader that also echo-broadcasts the order

information. Even with such a simple protocol, and using small

RSA keys (300 bits), the paper acknowledges that “public-key

operations still dominate the latency of reliable multicast, at

least for small messages”. Moreover, if a process does not

echo-broadcast a message to all or if a malicious leader per-

forms some attack against the ordering of the messages, these

events have to be detected and the corrupt process removed

from the group. This implies liveness is dependent on the cost

of this detection [30] and synchrony assumptions are required

about the network delay, allowing attacks where malicious

processes delay others in order to force their removal. For this

reason, Rampart relies on a group membership protocol not

only to handle voluntary joins and leaves from the group, but

also to detect and remove corrupt processes. This is a necessity

(that emerges out of design) as much as it is a feature. RITAS

can indeed be extended with a group membership protocol that

handles dynamic groups, however it does not require one for

its protocols to make progress because decisions are made in

a decentralized way.

Like Rampart, SecureRing is an intrusion-tolerant group

communication system [31]. It relies on a token that rotates

among the processes to decide the order of message deliveries.

This signed token carries message digests, a solution that

allows a lower number of signatures and an improvement

in performance when compared to Rampart. In SecureRing,

malicious behavior also has to be detected for the protocols

to make progress, which means that it suffers from similar

problems as Rampart.

Worm-IT uses the wormhole abstraction to provide a mem-

bership service and a view-synchronous atomic multicast

primitive [32]. It is designed under a hybrid system model.

The system is considered to be asynchronous and subject to

Byzantine failures with the exception of a small subset, the

wormhole, that is assumed to be secure (i.e., can only crash)

and synchronous. Critical steps of the protocols that require

stronger environmental properties (such as agreement tasks)

are executed inside the wormhole.

Byzantine JazzEnsemble is another group communication

system that resists Byzantine failures [33]. It relies on fuzzy

mute and fuzzy verbose failure detectors to detect mute failures

(i.e., a process neglecting to send messages) and verbose

failures (i.e., a process sending too many messages), respec-

tivelly. These kinds of failures can be identified based on

locally observed events, which motivates the use of such

failure detectors. Moreover, the system provides a vector

consensus protocol and a uniform broadcast protocol, as well

as modifications at each layer to overcome potential Byzantine

attacks.

BFT, while not a protocol stack, is an algorithm that

provides a Byzantine-fault-tolerant state machine replication

service [34]. In BFT, there are clients and servers. The clients

issue requests to the servers, then requests are processed by

the servers in total order, and a reply is returned to the clients.

Servers are either primary or backup and there is only one

primary at any given moment in the system. Client requests

are issued directly to the primary, which in turn multicasts the

request to the backups. The replies are transmitted to clients by

all servers. A client waits for f+1 replies with the same result

in order to obtain the response. This comprises the normal

operation of the algorithm. In case a primary fails, a view

change must occur and servers must agree on a new primary.

View changes are triggered by timeouts. After a view change

the service resumes to its normal operation.

It is hard to compare BFT and RITAS because they are

designed with different assumptions and goals in mind. BFT is

centralized and requires synchrony for liveness, while RITAS

is decentralized and completely asynchronous. BFT is a system

designed to perform a very specific task (i.e., state machine

replication), while RITAS is a stack that provides several

general broadcast and consensus protocols that can be applied

to a multitude of scenarios including state machine replication.

For instance, the Reliable Broadcast protocol in RITAS could

be used as a primitive to implement state machine replica-

tion (more specifically, the dissemination of requests from a

primary to the backups).

III. SYSTEM MODEL

The system is composed by a group of n processes P =
{p0, p1, ...pn−1}. Group membership is static, i.e., the group

is predefined and there cannot be joins or leaves during system

operation. Processes are fully-connected.

There are no constraints on the kind of faults that can

occur in the system. This class of unconstrained faults is

usually called arbitrary or Byzantine. Processes are said to

be correct if they do not fail, i.e., if they follow their protocol

until termination. Processes that fail are called corrupt. No

assumptions are made about the behavior of corrupt processes

– they can, for instance, stop executing, omit messages, send

invalid messages either alone or in collusion with other corrupt

processes. It is assumed that at most f = ⌊n−1

3
⌋ processes can

be corrupt.

The system is completely asynchronous. Therefore, there

are no assumptions whatsoever about bounds on processing

times or communications delays.

Each pair of processes (pi, pj) shares a secret key sij . It

is out of the scope of this work to present a solution for

distributing these keys, but it may require a trusted dealer

or some kind of key distribution protocol based on public-

key cryptography. Nevertheless, this is a long-term operation,

normally performed before the execution of the protocols and

does not interfere with their performance.

Each process has access to a random bit generator that

returns unbiased bits observable only by the process (if the

process is correct).

Some protocols use a cryptographic hash function H(m)
that maps an input m of arbitrary length into a fixed-length

output. We assume that it is impossible (1) to find two values

m 6= m′ such that H(m) = H(m′), and, (2) given a certain

output, to find an input that produces that output. The output

of the function is often called a hash.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 4

IV. PROTOCOL STACK

This section briefly describes the function of each protocol

and how it works. Since all protocols have already been de-

scribed in the literature, no formal specifications are given, and

some details are only provided to explain the optimizations.

We have developed formal proofs showing that the optimized

protocols behave according to their specification, but we could

not present them in the paper due to lack of space [35].

A. Reliable Channel

The two layers at the bottom of the stack implement a

reliable channel (see Figure 1). This abstraction provides

a point-to-point communication channel between a pair of

correct processes with two properties: reliability and integrity.

Reliability means that messages are eventually received, and

integrity says that messages are not modified in the channel. In

practical terms, these properties can be enforced using standard

Internet protocols: reliability is provided by TCP, and integrity

by the IPSec Authentication Header (AH) protocol [21].

B. Reliable Broadcast

The reliable broadcast primitive ensures two properties:

(1) all correct processes deliver the same messages; (2) if

the sender is correct then the message is delivered. The

implemented protocol was originally proposed by Bracha [22].

The protocol starts with the sender broadcasting a message

(INIT, m) to all processes. Upon receiving this message a

process sends a (ECHO, m) message to all processes. It then

waits for at least ⌊n+f
2

⌋ + 1 (ECHO, m) messages or f + 1
(READY, m) messages, and then it transmits a (READY, m)

message to all processes. Finally, a process waits for 2f + 1
(READY, m) messages to deliver m. Figure 2 illustrates the

three communication steps of the protocol.

C. Echo Broadcast

The echo broadcast primitive is a weaker and more efficient

version of the reliable broadcast. Its properties are somewhat

similar, however, it does not guarantee that all correct pro-

cesses deliver a broadcast message if the sender is corrupt [24].

In this case, the protocol only ensures that the subset of correct

processes that deliver will do it for the same message.

The protocol is essentially the described reliable broadcast

algorithm with the last communication step omitted. An in-

stance of the protocol is started with the sender broadcasting

a message (INITIAL, m) to all processes. When a process

receives this message, it broadcasts a (ECHO, m) message to

all processes. It then waits for more than n+f
2

(ECHO, m)

messages to accept and deliver m.

D. Binary Consensus

A binary consensus allows correct processes to agree on

a binary value. The implemented protocol is adapted from

a randomized algorithm by Bracha [22]. Each process pi

proposes a value vi ∈ {0, 1} and then all correct processes

decide on the same value b ∈ {0, 1}. In addition, if all correct

processes propose the same value v, then the decision must

be v. The protocol has an expected number of communication

steps for a decision of 2n−f , and uses the underlying reliable

broadcast as the basic communication primitive.

The protocol proceeds in 3-step rounds, running as many

rounds as necessary for a decision to be reached. In the first

step each process pi (reliably) broadcasts its proposal vi, waits

for n−f valid messages (the definition of valid is given in the

next paragraph) and changes vi to reflect the majority of the

received values. In the second step, pi broadcasts vi, waits for

the arrival of n − f valid messages, and if more than half of

the received values are equal, vi is set to that value; otherwise

vi is set to the undefined value ⊥. Finally, in the third step, pi

broadcasts vi, waits for n−f valid messages, and decides if at

least 2f + 1 messages have the same value v 6=⊥. Otherwise,

if at least f + 1 messages have the same value v 6=⊥, then vi

is set to v and a new round is initiated. If none of the above

conditions apply, then vi is set to a random bit with value 1

or 0, with probability 1

2
, and a new round is initiated.

A message received in the first step of the first round is

always considered valid. A message received in any other step

k, for k > 1, is valid if its value is congruent with any subset

of n− f values accepted at step k − 1. For example, suppose

that process pi receives n − f messages at step 1, where the

majority has value 1. Then at step 2, it receives a message

with value 0 from process pj . Remember that the message a

process pj broadcasts at step 2 is the majority value of the

messages received by it at step 1. That message cannot be

considered valid by pi since value 0 could never be derived by

a correct process pj that received the same n− f messages at

step 1 as process pi (i.e., value 0 is not congruent). If process

pj is correct, then pi will eventually receive the necessary

messages for step 1, which will enable it to form a subset of

n − f messages that validate the message with value 0. This

validation technique has the effect of causing the processes

that do not follow the protocol to be ignored.

E. Multi-valued Consensus

A multi-valued consensus allows processes to propose a

value v ∈ V with arbitrary length. The decision is either one of

the proposed values or a default value ⊥/∈ V . The implemented

protocol is based on the multi-valued consensus proposed by

Correia et al. [7]. It uses the services of the underlying reliable

broadcast, echo broadcast, and binary consensus layers. The

main differences from the original protocol are the use of echo

broadcast instead of reliable broadcast at a specific point, and

a simplification of the validation of the vectors used to justify

the proposed values.

The protocol starts when every process pi announces its

proposal value vi by reliably broadcasting a (INIT, vi) mes-

sage. The processes then wait for the reception of n− f INIT

messages and store the received values in a vector Vi. If a

process receives at least n−2f messages with the same value

v, it echo-broadcasts a (VECT, v, Vi) message containing

this value together with the vector Vi that justifies the value.

Otherwise, it echo-broadcasts the default value ⊥ that does not

require justification. The next step is to wait for the reception



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 5

Reliable
Broadcast
(AB_MSG)

Atomic BroadcastReliable Broadcast

3 steps2 steps3 steps 3 steps 3 steps 3 steps 3 steps

(9 steps)

(20 steps)

(14 steps)

(17 steps)

Fig. 2. Overview of the messages exchanged and best-case number of communication steps in each protocol.

of n − f valid VECT messages. A VECT message, received

from process pj , and containing vector Vj , is considered valid

if one of two conditions hold: (a) v =⊥; (b) there are at least

n − 2f elements Vi[k] ∈ V such that Vi[k] = Vj [k] = vj .

If a process does not receive two valid VECT messages with

different values, and it received at least n − 2f valid VECT

messages with the same value, it proposes 1 for an execution

of the binary consensus, otherwise it proposes 0. If the binary

consensus returns 0, the process decides on the default value

⊥. If the binary consensus returns 1, the process waits until it

receives n − 2f valid VECT messages (if it has not done so

already) with the same value v and decides on that value.

F. Vector Consensus

Vector consensus allows processes to agree on a vector

with a subset of the proposed values. The protocol is the

one described in [7] and uses reliable broadcast and multi-

valued consensus as underlying primitives. It ensures that

every correct process decides on a same vector V of size n; if

a process pi is correct, then V [i] is either the valued proposed

by pi or the default value ⊥, and at least f + 1 elements of

V were proposed by correct processes.

The protocol starts by reliably broadcasting a message

containing the proposed value by the process and setting the

round number ri to 0. The protocol then proceeds in up to f
rounds until a decision is reached. Each round is carried out as

follows. A process waits until n− f + ri messages have been

received and constructs a vector Wi of size n with the received

values. The indexes of the vector for which a message has not

been received have the value ⊥. The vector Wi is proposed as

input for the multi-valued consensus. If it decides on a value

Vi 6=⊥, then the process decides Vi. Otherwise, the round

number ri is incremented and a new round is initiated.

G. Atomic Broadcast

An atomic broadcast protocol delivers messages in the same

order to all processes. One can see atomic broadcast as a

reliable broadcast plus the total order property. The imple-

mented protocol was adapted from [7]. The main difference

is that it has been changed to use multi-valued consensus

instead of vector consensus and to utilize message identifiers

for the agreement task instead of cryptographic hashes. These

changes were made for efficiency and have been proved not to

compromise the correctness of the protocol. The protocol uses

reliable broadcast and multi-valued consensus as primitives.

The atomic broadcast protocol is divided in two tasks (see

Figure 2): (1) the broadcasting of messages, and (2) the

agreement over which messages should be delivered. When

a process pi wishes to broadcast a message m, it simply uses

the reliable broadcast to send a (AB MSG, i, rbid, m) message

where rbid is a local identifier for the message. Every message

in the system can be uniquely identified by the tuple (i, rbid).

The agreement task (2) is performed in rounds. A process pi

starts by waiting for AB MSG messages to arrive. When such

a message arrives, pi constructs a vector Vi with the identifiers

of the received AB MSG messages and reliably broadcasts

a (AB VECT, i, r, Vi) message, where r is the round for

which the message is to be processed. It then waits for n− f
AB VECT messages (and the corresponding Vj vectors) to be

delivered and constructs a new vector Wi with the identifiers

that appear in f +1 or more Vj vectors. The vector Wi is then

proposed as input to the multi-valued consensus protocol and

if the decided value W ′ is not ⊥, then the messages with their

identifiers in the vector W ′ can be deterministically delivered

by the process.

V. IMPLEMENTATION

This section describes the internal structure of the protocol

stack, and provides an insight into the design considerations

and practical issues that arose during the development of

RITAS. The protocol stack was implemented in the C language

and was packaged as a shared library with the goal of

offering a simple interface to applications wishing to use the

protocols. Some of the concepts presented here have been

studied in other group communication systems such as Horus

and Ensemble [36], [37].

A. Single-threaded Operation

When developing a software component such as a protocol

stack, there are two possible options regarding its operation:

multi-threaded or single-threaded. The RITAS protocol stack

runs in a single thread, independent of the application threads.

In a typical multi-threaded protocol stack, every instance of

a specific protocol is handled by a separate thread. Usually,

there is a pivotal thread that reads messages from the network

and instantiates protocol threads to handle messages that are



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 6

specific to them. Another option is to avoid the pivotal thread,

and have the protocol threads reading messages directly from

the network.

The multi-threaded approach may be simpler to implement

since each context is self-contained in a given thread, and

there is virtually no need for protocol demultiplexing since

messages can be addressed directly to the threads handling

them. This leads to a cleaner implementation (i.e., more

verbatim translations from pseudocode) because the protocol

code has only to deal with one protocol instance (the context

is implicit). Nevertheless, in a loaded system, with potentially

several hundreds of threads, the constant context switching and

synchronization between threads poses a serious performance

impact on the stack, and may provoke an unfair internal

scheduling.

A single-threaded approach, while more complex to de-

velop, allows a much more efficient stack operation when

properly implemented. A single-threaded protocol stack en-

sures a fair first-come, first-served scheduling as messages

are processed by the relevant protocol instances one-by-one

as they are received. But this approach poses additional

challenges. The contexts for the different protocol instances

are not self-contained and require explicit management, which

adds complexity to such tasks as message passing, protocol

demultiplexing, and packet construction. The specific protocol

code also becomes harder to implement since it has to juggle

between multiple contexts.

Since one of the main goals of RITAS was the implemen-

tation of an efficient protocol stack, the extra complexity of

a single-threaded approach was outweighted by its potential

performance advantages.

B. Message Buffers

In a multi-layered network protocol stack, messages have

to be passed back and forth. A certain degree of flexibility

is needed to manipulate the buffers that hold the messages

because data may need to be prepended or appended to these

buffers, and existing data may need to be transformed or

deleted. Additionally, the number of operations that actually

copy data has to be kept to a minimum to reduce performance

penalties.

In RITAS, information is passed along the protocol stack

using message buffers (mbuf for short). A mbuf is used to store

a message and several metadata related to its management. All

communication between the different layers is done by passing

pointers to mbufs. This way, it is possible to both eliminate the

need to copy large chunks of data when passing messages from

one layer to another, and have a data structure that facilitates

the manipulation of messages. This data structure was inspired

by the TCP/IP implementation in the Net/3 Operating System

kernel [38].

A mbuf is usually created when a new message arrives from

the network. The RITAS network scheduler creates a mbuf,

then it reads the message from the socket directly into the

mbuf, and passes the mbuf to the appropriate protocol layer.

A mbuf can also be created by a specific protocol layer, for

instance if it needs to send a message to other processes. Every

mbuf is reutilized as much as possible.

Fig. 3. Communication flow among the protocol layers during an atomic
broadcast.

There are also specific rules as to when a mbuf should be

destroyed. An outbound mbuf should be destroyed immedi-

atly after its message is sent to all relevant processes. The

exception is when a RITAS MBUF PROTECTED flag is set. In

this case, the mbuf was explicitly marked for no destruction

by a particular protocol layer, which then becomes solely

responsible for the mbuf destruction. For an inbound mbuf,

the last protocol to which the mbuf is going to be passed is

responsible for its management. A protocol layer has three

options, which are mutually exclusive, after it has processed

the message contained in the mbuf : it passes the mbuf to an

upper layer protocol, it destroys the mbuf, or it reuses the mbuf

to transmit a new message. The chosen action depends on the

semantic of the protocol and the current state of the particular

protocol instance context to which the mbuf is relevant.

C. Control Blocks and Protocol Handlers

Each protocol implemented in RITAS is formed by two

protocol-specific components: the control block, and the pro-

tocol handler. The control block is a data structure that holds

the state of a specific instance of the protocol. It keeps track

of things like the instance identification, the current protocol

step, and the values received so far.

The protocol handler is the set of functions that implement

the operation of the protocol. It is formed by initialization

and destruction functions, input and output functions, and

one or more functions that export the protocol functionality.

The purpose of the initialization and destruction functions is,

respectively, to allocate a new control block and initialize all

its variables and data structures, and to destroy the internal data

structures and the control block itself. The input and output

functions are used for inter-protocol communication, and both

receive as parameters the respective control block and the mbuf

to be processed. The communication between the protocols is

depicted in Figure 3.

D. The RITAS Channel and Control Block Chaining

Since applications might perform several broadcast and/or

agreement operations simultaneously, the ability to execute

multiple instances of the same protocol is a requisite. There-

fore, one needs to support many contexts for the different

protocol instances. When a message is passed to a given

protocol layer, that layer must be able to identify the relevant

context for the message, and process the message according

to it. This hints a necessity of having each protocol instance

uniquely identified, and to have messages addressed to specific



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 7

protocol instances to avoid overlapping of multiple instances.

Two techniques in RITAS make possible the efficient im-

plementation of this functionality: the RITAS Channel, and

Control Block Chaining.

1) RITAS Channel: This is a special protocol handler that

sits between the broadcast layers and the Reliable Channel

layer (the Reliable Channel layer corresponds to the imple-

mentation of TCP and IPSec that is accessed through the

socket interface) (see Figure 3). It is the first layer to process

messages after they are read from the network, and the last

one before they are written to the network.

The purpose of the RITAS channel is to build a header

containing a unique identifier for each message. Messages are

always addressed to a given RITAS Channel. The message

is then passed along the appropriate protocol instances by a

mechanism called control block chaining.

2) Control Block Chaining: This mechanism manages the

linking of different protocol instances, solving several prob-

lems: it gives a means to unambiguously identify all messages,

provides for seamless protocol demultiplexing, and facilitates

control block management.

Control block chaining works in the following way. Suppose

an application executes an atomic broadcast. The creation of

the atomic broadcast protocol instance is done by calling the

corresponding initialization function that returns a pointer to

a control block responsible for that instance. Since atomic

broadcast uses multi-valued consensus and reliable broadcast

as primitives, the atomic broadcast initialization function also

calls the initialization functions for such protocols in order

to create as many instances of these protocols as needed.

The returned control blocks are kept and managed in the

atomic broadcast control block. This mechanism is recursive

since second-order protocol instances may need to use other

protocols as primitives and so on. The result is a tree of control

blocks that has its root at the protocol called by the application

and goes down all the way, having control blocks for RITAS

Channels as the leaf nodes.

A unique identifier is given to each outbound message when

the associated mbuf reaches the RITAS Channel layer. The tree

is traversed bottom-up starting at the RITAS Channel control

block and ending at the root control block. The message

identifier is generated by appending the protocol instance ID

of each traversed node to a local message identifier that was

set by the node that created the mbuf.

Protocol demultiplexing is done seamlessly. When a mes-

sage arrives, its identification defines an association with a

particular RITAS Channel control block. The RITAS Channel

passes the mbuf to the upper layer by calling the appropriate

input function of its parent control block. The message is

processed by that layer and the mbuf keeps being passed in

the same fashion.

E. Out-of-context Messages

THe asynchronous nature of the protocol stack allows

scenarios where a process receives messages for a protocol in-

stance whose context has not yet been created. These messages

– called out-of-context (OOC) messages – have no context to

handle them, though they will, eventually.

Since the correctness of the protocols depends on the

eventual delivery of these messages, they cannot simply be

discarded. All OOC messages are stored in a hash table. When

a RITAS Channel is created, it checks this hash table for

relevant messages. If any relevant messages exist, they are

promptly delivered to the upper protocol instance.

It is also possible for a protocol instance to be destroyed

before consuming all of its OOC messages. To scenarios where

OOC messages are kept indefinitely in the hash table, upon

the destruction of a protocol, the hash table is checked and all

relevant messages are deleted. This is not a solution for the

case where a malicious process sends bogus OOC messsages

that will never have a context. The problem of finite memory

in Byzantine message-passing systems is an open issue in

the research community. In principle, RITAS and other group

communication systems could benefict from an approach such

as the one in [39].

VI. PERFORMANCE EVALUATION

This section describes the performance evaluation of the

protocol stack in both local-area-network (LAN) and wide-

area-network (WAN) environments. Two different perfor-

mance analysis are made. First, a comparative evaluation is

presented in order to gain insight on the stack, and on how

protocols relate and build on one another performance-wise.

Second, an in-depth analysis is conducted on how atomic

broadcast performs under various conditions. This protocol is

arguably the most interesting candidate for a detailed study

because it utilizes all other protocols as primitives, either

directly or indirectly, and it can be used for many practical

applications [34], [32], [40].

A. Testbeds

The experiments were carried out on three different testbeds.

Two represent LAN environments which differ on the hard-

ware and the number of nodes they accomodate, and the third

represents a WAN environment with four nodes.

The first LAN testbed, which will be refered as tb-lan-

slow, consisted on four 500 MHz Dell Pentium III PCs with

128 MB of RAM, running Linux kernel 2.6.5. The PCs were

connected by an 100 Mbps HP ProCurve 2424M network

switch. Bandwidth tests taken with the network performance

tool lperf have shown a consistent throughput of 9.1 MB/s in

full-duplex mode.

The second LAN testbed, which will be referred as tb-

lan-fast, consisted of 10 Dell PowerEdge 850 servers. These

servers have Pentium 4 CPUs with 2.8 GHz of clock speed,

and 2GB of RAM. They were connected by a Dell Pow-

erConnect 2724 network switch with 10/100/1000 Mbps of

bandwidth capacity. The operating system was Linux 2.6.11.

Bandwidth tests showed a consistent throughput of 1.16 MB/s

for the 10 Mbps setting, 11.5 MB/s for the 100 Mbps setting,

and 67.88 MB/s for the 1000 Mbps setting. All values were

taken in full-duplex mode, which was used in the experiments.

The WAN testbed, which will be refered as tb-wan, con-

sisted of four nodes, each one located in a different continent:

a european node in Lisbon, Portugal (P4, 3Ghz, 1GB RAM);



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 8

a north american node in Berkeley, California (P4, 2.4Ghz,

1GB RAM); a south american node in Campinas, Brazil

(Xeon, 3GHz, 1.5GB RAM); and an asian node in Ishikawa,

Japan (P4, 3.4GHz, 3.5GB RAM). These nodes belong to the

Planetlab platform [41] and their operating system was Linux

2.6.12. Table I shows the round-trip latency and bandwidth

measurements taken between each pair of nodes.

Latency (ms) Bandwidth (Kb/s)

Berkeley - Ishikawa 131 (0.26) 1894
Lisbon - Berkeley 210 (1.12) 1167
Berkeley - Campinas 243 (1.37) 990
Lisbon - Campinas 281 (1.24) 845
Lisbon - Ishikawa 322 (1.78) 740
Campinas - Ishikawa 472 (0.85) 165

TABLE I

AVERAGE ROUND-TRIP LATENCY AND BANDWIDTH BETWEEN EVERY PAIR

OF NODES IN TESTBED tb-wan (VARIANCE IS SHOWN IN PARENTHESES)

For testbeds tb-lan-fast and tb-lan-slow the IPSec imple-

mentation that was used was the one available in the Linux

kernel and the reliable channels that were established between

every pair of processes employed the IPSec AH protocol (with

SHA-1) in transport mode [21]. For testbed tb-wan there was

no IPSec available, so the experiments for this testbed were

carried out with regular IP. This makes the protocols insecure

since the integrity property of the channels is not provided,

but our interest here is to evaluate the performance of the

protocols. In practice, this is not affected because the latency

added by the cryptographic operations (at the microseconds

order) is negligible compared to the latency of the WAN links

(around hundreds of milliseconds).

B. Stack Analysis

In order to get a better understanding about the relative

overheads of each layer of the stack, we have run a set of

experiments to determine the latencies of the protocols. These

measurements were carried out in the following manner: a

signaling machine, that does not participate in the protocols, is

selected to control the benchmark execution. It starts by send-

ing a 1-byte UDP message to the n processes to indicate which

specific protocol instance they should create. Then, it transmits

M messages, each one separated by a two second interval (in

our case M was set to 100). Whenever one of these messages

arrives, a process runs the protocol, either a broadcast or a

consensus. In case of a broadcast, the process with the lowest

identifier acts as the sender, while the others act as receivers.

In case of a consensus, all processes propose identical initial

values2. The broadcast messages and the consensus proposals,

all carry a 10-byte payload (except for binary consensus where

the payload is 1 byte). The latency of each instance was

obtained at a specific process. This process records the instant

when the signal message arrives and the time when it either

2The only protocol whose performance may directly suffer from different
initial values is binary consensus since its termination is probabilistic. This
protocol has been subject to a thorough evaluation in a different paper and
its performance has been shown not to be significantly affected by different
initial values [19].

delivers a message (for broadcast protocols) or a decision (for

consensus protocols). The measured latency is the interval

between these two instants. The average latency is obtained

by taking the mean value of the sample of measured values.

Outliers were identified and excluded from the sample.

w/ IPSec (µs) w/o IPSec (µs) Overhead

Echo Broadcast 1724 1497 15%
Reliable Broadcast 2134 1641 30%
Binary Consensus 8922 6816 30%
Multi-valued Cons. 16359 11186 46%
Vector Consensus 20673 15382 34%
Atomic Broadcast 23744 18604 27%

TABLE II

AVERAGE LATENCY FOR ISOLATED EXECUTIONS OF EACH PROTOCOL IN

TESTBED tb-lan-slow (100 MBPS) WITH FOUR PROCESSES.

The results for testbed tb-lan-slow with four processes,

shown in Table II, demonstrate the interdependencies among

protocols and how much time is spent on each protocol. For

example, in a single atomic broadcast instance roughly 2/3

of the time is taken running a multi-valued consensus. For

a multi-valued consensus about 1/2 of the time is used by

the binary consensus. And for vector consensus about 3/4

of the time is utilized by the multi-valued consensus. The

experiments also demonstrated that consensus protocols were

always able to reach a decision in one round because the initial

proposals were identical.

The table also shows the cost of using IPSec. This overhead

could in part be attributed to the cryptographic calculations,

but most of it is due to the increase on the size of the messages.

For example, the total size of any Reliable Broadcast message

– including the Ethernet, IP, and TCP headers – carrying a 10-

byte payload is 80 bytes. The IPSec AH header adds another

24 bytes, which accounts for an extra 30%.

n w/ IPSec (µs) relative slowdown

Echo Broadcast
4 584 -
7 805 38%

10 1045 79%

Reliable Broadcast
4 667 -
7 907 36%

10 1172 76%

Binary Consensus
4 3094 -
7 8991 190%

10 19741 538%

Multi-valued Consensus
4 4952 -
7 13335 169%

10 25652 418%

Vector Consensus
4 6022 -
7 16826 179%

10 32674 443%

Atomic Broadcast
4 6467 -
7 18496 186%

10 33474 418%

TABLE III

AVERAGE LATENCY AND RELATIVE SLOWDOWN (W.R.T. TO THE

FOUR-PROCESS SCENARIO) FOR ISOLATED EXECUTIONS OF EACH

PROTOCOL (WITH IPSEC) IN TESTBED tb-lan-fast (1000 MBPS).

Table III shows the performance results for testbed tb-lan-

fast. The average latency for all protocols is presented for



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 9

three different group sizes: 4, 7, and 10 processes. The relative

slowdown with respect to the four-process scenario is also

shown for each protocol.

The first conclusion that can be extracted from these re-

sults is that protocols in this testbed exhibit a much better

performance than the previous testbed. The use of more

powerful hardware had a significant impact on the perfor-

mance of all protocols. For instance, in the case of binary

consensus, the performance was improved three-fold, while

for atomic broadcast, performance was increased almost four

times. The network switch with increased bandwidth capacity,

the network interface cards with better performance, and

the machines in general with greater computational power

are the obvious candidates to justify the performance gain.

It is unclear, however, the relative weight of the various

hardware components on the faster protocol execution. Later

experiments isolate some of these parameters and demonstrate

in greater depth the impact of network bandwidth and host

computational power on the protocol stack performance.

Another interesting observation from the results in Table III

is the relative slowdown of each protocol when the group size

increases. The reliable and echo broadcast protocols were less

sensitive to a larger group size, while the slowdown for the

remaining protocols was considerably accentuated due to the

increase in the number of exchanged messages. Reliable and

echo broadcast exchange O(n2) messages per communication

step, while the remaining protocols exchange O(n3), thus

being more sensitive to increasing group sizes.

The results for the WAN environment are shown in Ta-

ble IV. The performance of the protocols is significantly

affected by the higher-latency, lower-bandwidth links of this

testbed. As expected, the protocols with a larger number of

messages exchanges suffer more due to the network delays.

Latency (ms)

Echo Broadcast 312.62
Reliable Broadcast 486.24
Binary Consensus 1408.75
Multi-valued Consensus 2232.30
Vector Consensus 2629.34
Atomic Broadcast 2998.70

TABLE IV

AVERAGE LATENCY FOR ISOLATED EXECUTIONS OF EACH PROTOCOL IN

TESTBED tb-wan (WITH FOUR PROCESSES).

C. Atomic Broadcast Analysis

This section evaluates the atomic broadcast protocol in

more detail. The experiments were carried out by having the

n processes send a burst of k messages and measuring the

interval between the beginning of the burst and the delivery

of the last message. The benchmark was performed in the

following way: processes wait for a 1-byte UDP message

from the signaling machine, and then each one atomically

broadcasts a burst of k
n

messages. Messages have a fixed

size of m bytes. For every tested workload, the obtained

measurement reflects the average value of 10 executions.

Two metrics are used to assess the performance of

the atomic broadcast: burst latency (Lburst) and maximum

throughput (Tmax). The burst latency is always measured

at a specific process and is the interval between the instant

when it receives the signal message and the moment when it

delivers the kth message. The throughput for a specific burst

is the burst size k divided by the burst latency Lburst (in

seconds). The maximum throughput Tmax can be inferred as

the value at which the throughput stabilizes (i.e., does not

change with increasing burst sizes). Although no graphs for

the burst latency are provided due to space constrains, by

dividing the burst size by the throughput value one can obtain

the corresponding burst latency in seconds.

The measurements were taken by varying several system

parameters: group size, network bandwidth, fault load, and

message payload size. In the LAN environment, the impact of

all these parameters is tested. In the WAN environment, only

the fault load and the payload size are tested.

The group size defines the number of processes n in the

system and can assume three values: 4, 7, and 10.

The network bandwidth is the amount of data that can be

passed between every pair of processes in a given period of

time. It can take three values: 10 Mbps, 100 Mbps, and 1000

Mbps.

The fault load defines the types of faults that are injected

in the system during its execution. The measurements were

obtained under three fault loads. In the fault-free fault load

all processes behave correctly. In the fail-stop fault load f
processes crash before the measurements are taken (f is al-

ways set to the maximum number of processes that can fail as

dictated by the system model, which means that f = ⌊n−1

3
⌋).

Finally, in the Byzantine fault load f processes permanently

try to disrupt the behavior of the protocols. At the binary

consensus layer, they always propose zero trying to impose a

zero decision. At the multi-valued consensus layer, they always

propose the default value in both INIT and VECT messages

trying to force correct processes to decide on the default

value. The impact of any such attack, if successful, would be

that correct processes do not reach an agreement over which

messages should be delivered by the atomic broadcast protocol

and, consequently, would have to start a new agreement round.

The message payload size is the length of the data trans-

mitted in each atomic broadcast (excluding protocol headers).

Four values were used in the experiments: 10 bytes, 100 bytes,

1 Kilobyte, and 10 Kilobytes.

1) Group Size and Fault Load in LAN: The set of experi-

ments described in this section had the objective of measuring

the impact of both the group size and the fault load in a LAN

environment. The network bandwidth was fixed to 100 Mbps

in testbed tb-lan-slow, and to 1000 Mbps in testbed tb-lan-fast.

The message payload size was 100 bytes. The group size was

set to for 4, 7, and 10 processes. All three fault loads were

tested: fault-free, fail-stop, and Byzantine.

Figure 4 shows the performance of the atomic broadcast

in testbed tb-lan-fast for the three different fault loads. Each

curve shows the throughput for a different group size n.

a) Fault-free fault load: From the graph in Figure 4

it is possible to observe that the stabilization point in the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 10

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

fail-stop fault load Byzantine fault loadfault-free fault load

1 Gbps bandwidth / 100-byte messages

Fig. 4. Throughput for atomic broadcast with different group sizes and fault loads for testbed tb-lan-fast.

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

10-byte messages 100-byte messages 1K-byte messages

fault-free fault load / 100-byte messages

Fig. 5. Throughput for atomic broadcast with different bandwidth settings and message sizes for testbed tb-lan-fast.

throughput curves indicates the maximum throughput Tmax.

This value was around 2800 messages/s for a group size of 4

processes, 1500 msgs/s for 7 processes, and 1000 msgs/s for

10 processes. The burst latency for a burst size of 1000 was

354 ms, 700 ms, and 995 ms for 4, 7, and 10 processes, respec-

tively. The group size had a significant impact on the protocol

performance. The maximum throughput dropped almost to half

from the four-process to the the seven-process scenario, and

then about one third from the seven-process to the ten-process

scenario. These results were expected because larger group

sizes implicate that a larger number of messages must be

exchanged. This imposes a higher load on the network, which

decreases the maximum throughput.

b) Fail-stop fault load: In this fault load, where f
processes crash, each correct process sends a burst of k

n−f

messages. Looking at the curves, it is possible to conclude

that performance is noticeably better with f crashed processes

than in the fault-free situation. This happens because with

f fewer processes there are fewer messages. The decreased

contention, which does not necessarily occur at the network

since the individual nodes are also susceptible to resource con-

tention, allows operations to be executed faster. The maximum

throughput Tmax is around 3000 messages per second for a

group size of 4 processes, 1700 msgs/s for 7 processes, and

1050 msgs/s for 10 processes. The burst latency for a burst

size of 1000 was 330 ms, 587 ms, and 989 ms for 4, 7, and

10 processes, respectively.

c) Byzantine fault load: In this fault load, f processes

try to disrupt the protocol. The maximum throughput Tmax

is around 2800 messages per second for a group size of 4

processes, 1500 msgs/s for 7 processes, and 1000 msgs/s for

10 processes. The burst latency for a burst size of 1000 was

355 ms, 704 ms, and 966 ms for 4, 7, and 10 processes,

respectively.

There is no noticeable performance penalty when compared

to the fault-free fault load. An important result is that all the

consensus protocols reached agreement within one round, even

under Byzantine faults. This can be explained in a intuitive

way as follows. The experimental setting was a LAN, which

not only provides a low-latency, high-throughput environment,

but also keeps the nodes within symmetrical distance of

each other. Due to this symmetry, in the atomic broadcast

protocol, correct processes maintained a fairly consistent view

of the received AB MSG messages because they all received

these messages at approximately the same time. Any slight

inconsistencies that, on occasion, existed over this view were

squandered when processes broadcast vector V (which was

built with the identifiers of the received AB MSG messages)

and then constructed a new vector W (which serves as the

proposal for the multi-valued consensus) with the identifiers

that appeared in, at least, f + 1 of those V vectors. This

mechanism caused all correct processes to propose identical

values in every instance of the multi-value consensus, which

allowed one-round decisions.

d) Testbed tb-lan-slow vs. tb-lan-fast: Figure 6 (left

chart) compares the performance for the fault-free and fail-

stop scenarios with four processes in both testbeds. The curves

for the Byzantine scenario were left out for legibility since,

as observed above, they are practically the same as for the

fault-free scenario. The bandwidth for testbed tb-lan-slow is

100 Mbps, and for tb-lan-fast is set to 1000 Mbps.

Unsurprisingly, it can be observed that the performance is

clearly superior in testbed tb-lan-fast. The greater computa-

tional power and network capacity of tb-lan-fast allows a



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 11

maximum throughput about 4 times larger in the fault-free

scenario (2800 msgs/s vs. 650 msgs/s), and 3 times larger

in the fail-stop scenario (3000 msgs/s vs. 1000 msgs/s). The

performance factor is larger in the fault-free case because

the load increase in this scenario w.r.t. the fail-stop scenario

pushes tb-lan-slow closer to its limit (i.e., consumes a greater

percentage of resources) than tb-lan-fast.

2) Network Bandwidth and Message Size in LAN: This sec-

tion analyzes in greater detail the impact of network bandwidth

and message payload size in the protocol performance. In these

experiments, no faults were injected and the group size was

set to four processes. The network bandwidth was 1000, 100,

and 10 Mbps for testbed tb-lan-fast, and 100 Mbps for testbed

tb-lan-slow. Four message payload sizes were used: 10 bytes,

100 bytes, 1 Kilobyte, and 10 Kilobytes.

Figure 5 shows the performance curves for testbed tb-lan-

fast with 10-byte, 100-byte, and 1K-byte message payloads.

Each curve represents a different bandwidth value.

While there is a clear performance difference between the

protocol execution in the three network bandwidth scenarios,

it is not accentuated as one would expect, if considering the

bandwidth as the sole performance bottleneck. For instance,

while the 1000 Mbps scenario has 100 times more bandwidth

than the 10 Mbps scenario, the maximum throughput is only

about 1.6 higher in the 1000 Mbps case (2900 msgs/s vs. 1800

msgs/s) with 10-byte messages. It is only for larger message

payloads that the network bandwidth becomes a restricting

factor. As later experiments confirm, the processing power

of the individual nodes and the network latency considerably

affect the performance, especially for small payload sizes.

Finally, the middle and right charts of Figure 6 compare the

protocol performance on both testbeds with similar bandwidth

values. The purpose is solely to compare the impact of the

individual node computational power on the protocol perfor-

mance. As can be easily observed, testbed tb-lan-fast clearly

outperforms testbed tb-lan-slow. It is only for large payloads

(e.g., 10 Kbytes) that their performance becomes comparable

as both the network bandwidth and latency become more

restricting factors.

3) Fault Load and Message Size in WAN: This section

describes the experiments that measure the impact of the

message payload size and different types of faults in the WAN

environment (testbed tb-wan).

a) Fault-free fault load: The left chart of Figure 7 shows

the performance of the atomic broadcast in testbed tb-wan

when no faults occur in the system. Each curve shows the

throughput for a different payload size. For 10-byte payloads,

the maximum throughput is around 80 msgs/s (burst latency

of 13 seconds for k = 1000). For 100-byte payloads, the

maximum throughput is around 32 msgs/s (burst latency of

34 seconds for k = 1000). Finally, for 1K-byte payloads, the

throughput stabilizes around 2,5 msgs/s (burst latency of 400

seconds for k = 1000).

As expected, the throughput in the WAN environment is

considerably lower than in the LAN environment. The higher

latency and lower bandwidth of such an environment has a

negative impact on the atomic broadcast performance, and

makes it extremely sensitive to the message payload size.

b) Fail-stop fault load: The middle chart of Figure 7

shows the performance of the atomic broadcast (using 100-

byte payload messages) in testbed tb-wan when one of the

processes fails by crashing. One curve shows the performance

impact on the atomic broadcast protocol when the Campinas

node crashes, and the other curve when a node other than

Campinas crashes. When the crashed node is not Campinas,

the performance of the protocol is similar for all the remaining

scenarios, with the throughput stabilizing around 14 msgs/s

(burst latency of 71 seconds for k = 1000). On the other

hand, when the crashed node is Campinas, the performance of

the atomic broadcast is boosted to around 120 msgs/s (burst

latency of 8 seconds for k = 1000), a significant increase even

if compared to the fault-free scenario.

The first observation of these results is that when the

crashed node is not Campinas, the performance is worse

than the fault-free scenario by about 50%. Messages from

the Campinas node were consistently the last ones to arrive

at any given process for any particular communication step.

This observation is coherent with the latency and bandwidth

measurements taken. The links connecting to the Campinas

node had the worst results on average. The conclusion is that

the Campinas node is a performance bottleneck. When one

process crashes (other than Campinas) this forces all processes

to wait for the Campinas messages at every communication

step. In the fault-free scenario this is offset by the fact that

the other processes need not wait for the Campinas messages

to advance in the execution of the protocols. They only need

to wait for the messages that Campinas atomically broadcasts

(but not the messages related to agreement executions) since,

by definition of the experiment, all processes wait for k
n

messages from each process.

The second observation is that the atomic broadcast has

a considerably higher throughput when the crashed node is

Campinas. This can be explained using the same rationale as

the previous observation. Since the process crashed and by

definition of the experiment, the other processes do not expect

any messages from the Campinas node (not even atomically

broadcast messages). Hence, the higher performance in this

case, even when compared to the fault-free scenario. What

is striking is really how much of a performance impact one

slower process can have on the execution of the protocol.

c) Byzantine fault load: The performance of the atomic

broadcast in testbed tb-wan is shown on the right chart of Fig-

ure 7 when one of the processes tries to disrupt the execution

of the protocol. One curve shows the performance impact on

the atomic broadcast protocol when the Campinas node fails,

and the other curve when a node other than Campinas fails.

When the Byzantine node is not Campinas, the performance

of the protocol is again very similar for all the cases with the

maximum throughput being roughly around 12 msgs/s. When

the Byzantine node is Campinas, the throughput climbs up to

around 35 msgs/s but drops to around 20-25 msgs/s for higher

burst sizes (i.e., k > 600).

The main observations are similar for the fail-stop scenario.

The protocol performance is worse when the Byzantine node

is not Campinas, and better when it is Campinas. Naturally,

this implies that when the Byzantine node is among the n−f



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 12

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

n = 4 / tb-fast: 1000Mbps, tb-slow: 100Mbps /
100-byte messages

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

n = 4 / fault-free executions / 100 Mbps

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200

burst size (messages)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

Fig. 6. Comparative throughput for atomic broadcast for testbeds tb-lan-slow and tb-lan-fast.

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

burst size (msgs)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

burst size (msgs)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200

burst size (msgs)

th
ro

u
g

h
p

u
t

(m
s
g

s
/s

)

campinas, m = 100 not campinas, m = 100m = 10 m = 100 m = 1K

fault-free fault load Byzantine fault loadfail-stop fault load

n = 4 / WAN

Fig. 7. Throughput for atomic broadcast for testbed tb-wan.

fastest, its power to delay the execution of the protocols is

greater. Because the messages from the slower node are rarely

processed by the other processes, the impact of its Byzantine

actions is minimized or even non-existent. The performance

of the atomic broadcast when the Byzantine node is Campinas

is similar to the fault-free scenario for burst sizes less or equal

to 600. It is only when the burst rises above this threshold that

the node begins to show some capacity to delay the protocol

execution. When more messages are processed in the system,

there is a higher chance for some of the messages sent by

Campinas to be among the first n− f to be received by other

processes.

4) Relative Cost of Agreement: On all experiments only

a few agreements were necessary to deliver an entire burst.

The observed pattern was that a consensus was initiated

immediately after the arrival of the first message. While the

agreement task was being run, a significant portion of the

burst would arrive, and so on until all the messages were

delivered. This has the interesting effect of diluting the cost

of the agreements when the load increases.

Figure 8 shows the relative cost of the agreements with

respect to the total number of (reliable and echo) broadcasts

that was observed in the fault-free scenario with four processes

and 100-byte messages in testbed tb-lan-fast. This relative cost

is referred to as the efficiency of the atomic broadcast protocol.

The curves for the other scenarios are almost identical; none of

the testing parameters had a noticeable effect on the efficiency.

Basically, two quantities were obtained for the transmission of

every burst: the total number of (reliable and echo) broadcasts;

and the total number of (reliable and echo) broadcasts that

were necessary to execute the agreement operations. The

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 200 400 600 800 1000 1200

burst size (messages)

%
a
g

re
e
m

e
n

ts

Fig. 8. Relative cost: percentage of (reliable or echo) broadcasts that are
due to the agreements when a burst of messages is atomically broadcast.

values depicted in the figure are the second quantity divided

by the first. It is possible to observe that for small burst sizes,

the cost of agreement is high – in a burst of 4 messages, it

represents about 92% of all broadcasts. This number, however,

drops exponentially, reaching as low as 6.3% for a burst size

of 1000 messages.

There is a downside to this result that is related to the

individual message latency under an atomic broadcast burst.

According to the observed pattern, for a burst of k messages,

k − 1 are delivered exactly at the end of the burst. This

means the individual message latency for those k−1 messages

matches the whole burst latency and suggests that in a certain

usage scenario the protocols could be optimized to provide a

more sparse distribution of message delivery inside a burst (by

sacrificing some efficiency).



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 13

D. Summary of Results

Some of the conclusions of the experimental evaluation are

summarized in the following points:

• The protocols are robust. In LAN environments, perfor-

mance (and also correctness) is not affected by the tested

fault patterns.

• The protocols are efficient with respect to the number

of rounds to reach agreement. In the experiments with

no Byzantine failures, the multi-valued consensus always

reached an agreement with a value distinct from the

default ⊥, and the binary consensus always terminated

within one round.

• Since protocols do not carry out any recovery actions

when a failure occurs, crashes have the effect of making

executions faster for LAN environments. Fewer processes

means less contention on the network.

• The network bandwidth only becomes a serious perfor-

mance bottleneck when it becomes relatively small (i.e.,

10 Mbps or WAN) or the message payloads become

relatively large (i.e., 1 KB and 10 KB).

• Protocols perform much worse in a WAN, due to its

higher-latency and lower-bandwith links.

• For LANs, the computational capability of the individ-

ual nodes has a strong influence on the protocol stack

performance.

• In a WAN, the performance impact of a process crash

can be positive or negative, depending on whether the

process is relatively slow or relatively fast, respectively.

• A Byzantine process can have a negative impact on the

performance of the protocols in a WAN environment, but

only if the process can consistently broadcast valid mes-

sages that are delivered among the first n − f messages

for any given step.

• On the atomic broadcast protocol, the cost of the agree-

ments is diluted when the load is high. For a burst of

1000 messages, it represents only 6.3% of all (reliable or

echo) broadcasts that were made.

VII. CONCLUSION

The paper presents an implementation and evaluation of a

stack of intrusion-tolerant randomized protocols. These pro-

tocols have a set of important structural properties, such as

not requiring the use of public-key cryptography (relevant for

good performance) and optimal resilience (significant in terms

of system cost).

The experiments led to several observations. First, random-

ized binary consensus protocols that in theory run in high

numbers of steps, in practice may execute in only a few rounds

under realistic conditions. Second, although atomic broadcast

is equivalent to consensus, with the right implementation a

high number of atomic broadcasts can be done with a small

number of rounds of consensus. Consequently, the average cost

in terms of throughput for atomic broadcast can be almost

as little as a reliable broadcast. Third, taking decisions in a

decentralized way is important to avoid performance penalties

due to the existence of faults. In fact, the performance of our

protocols is approximately the same, or even improved, with

realistic fault loads.

In conclusion, randomization can, in fact, and contrary to

a widespread belief in the scientific community, be a valid

solution for the deployment of efficient distributed systems.

This is true even if they are deployed in hostile environments

where they are usually subject to malicious attacks.

REFERENCES

[1] J. S. Fraga and D. Powell, “A fault- and intrusion-tolerant file system,” in
Proceedings of the 3rd International Conference on Computer Security,
Aug. 1985, pp. 203–218.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions

on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.-
Mar. 2004.

[3] P. E. Verissimo, N. F. Neves, and M. P. Correia, “Intrusion-tolerant
architectures: Concepts and design,” in Architecting Dependable Sys-

tems, ser. Lecture Notes in Computer Science, R. Lemos, C. Gacek,
and A. Romanovsky, Eds. Springer-Verlag, 2003, vol. 2677.

[4] F. B. Schneider, “Implementing faul-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, Dec. 1990.

[5] R. Guerraoui and A. Schiper, “The generic consensus service,” IEEE

Transactions on Software Engineering, vol. 27, no. 1, pp. 29–41, Jan.
2001.

[6] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Cornell University, Department of
Computer Science, Tech. Rep. TR94-1425, May 1994.

[7] M. Correia, N. F. Neves, and P. Verssimo, “From consensus to atomic
broadcast: Time-free Byzantine-resistant protocols without signatures,”
The Computer Journal, vol. 41, no. 1, pp. 82–96, Jan. 2006.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, Apr. 1985.

[9] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
Apr. 1988.

[10] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism
needed for distributed consensus,” Journal of the ACM, vol. 34, no. 1,
pp. 77–97, Jan. 1987.

[11] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267,
Mar. 1996.

[12] D. Malkhi and M. Reiter, “Unreliable intrusion detection in distributed
computations,” in Proceedings of the 10th Computer Security Founda-

tions Workshop, June 1997, pp. 116–124.
[13] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “Byzantine fault

detectors for solving consensus,” The Computer Journal, vol. 46, no. 1,
pp. 16–35, Jan. 2003.

[14] N. F. Neves, M. Correia, and P. Verissimo, “Solving vector consensus
with a wormhole,” IEEE Transactions on Parallel and Distributed

Systems, vol. 16, no. 12, Dec. 2005.
[15] M. Ben-Or, “Another advantage of free choice: Completely asyn-

chronous agreement protocols,” in Proceedings of the 2nd ACM Sympo-

sium on Principles of Distributed Computing, Aug. 1983, pp. 27–30.
[16] M. O. Rabin, “Randomized Byzantine generals,” in Proceedings of the

24th Annual IEEE Symposium on Foundations of Computer Science,
Nov. 1983, pp. 403–409.

[17] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Contanstino-
ple: Practical asynchronous Byzantine agreement using cryptography,”
in Proceedings of the 19th ACM Symposium on Principles of Distributed

Computing, July 2000, pp. 123–132.
[18] C. Cachin and J. A. Poritz, “Secure intrusion-tolerant replication on the

Internet,” in Proceedings of the International Conference on Dependable

Systems and Networks, June 2002, pp. 167–176.
[19] H. Moniz, M. Correia, N. F. Neves, and P. Verissimo, “Experimental

comparison of local and shared coin randomized consensus protocols,”
in Proceedings of the 25th IEEE Symposium on Reliable Distributed

Systems (SRDS’06), Oct. 2006, pp. 235–244.
[20] R. Friedman, A. Mostefaoui, and M. Raynal, “Simple and efficient

oracle-based consensus protocols for asynchronous byzantine systems,”
Transactions on Dependable and Secure Computing, vol. 2, no. 1, pp.
46–56, Jan.-March 2005.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, XXXXXX-XXXXXX XXXX 14

[21] S. Kent and R. Atkinson, “Security architecture for the internet protocol,”
IETF Request for Comments: RFC 2093, Nov. 1998.

[22] G. Bracha, “An asynchronous ⌊(n−1)/3⌋-resilient consensus protocol,”
in Proceedings of the 3rd ACM Symposium on Principles of Distributed

Computing, Aug. 1984, pp. 154–162.
[23] M. Reiter, “Secure agreement protocols: Reliable and atomic group

multicast in Rampart,” in Proceedings of the 2nd ACM Conference on

Computer and Communications Security, Nov. 1994, pp. 68–80.
[24] S. Toueg, “Randomized Byzantine agreements,” in Proceedings of the

3rd ACM Symposium on Principles of Distributed Computing, Aug.
1984, pp. 163–178.

[25] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with
optimal resilience,” in Proceedings of the 25th Annual ACM Symposium

on Theory of Computing, 1993, pp. 42–51.
[26] L. E. Moser and P. M. Melliar-Smith, “Byzantine-resistant total ordering

algorithms,” Information and Computation, vol. 150, pp. 75–111, 1999.
[27] R. Baldoni, J. Helary, M. Raynal, and L. Tanguy, “Consensus in

Byzantine asynchronous systems,” in Proc. of the Int. Colloquium on

Structural Information and Communication Complexity, June 2000, pp.
1–16.

[28] J. P. Martin and L. Alvisi, “Fast Byzantine consensus,” in Proceedings

of the IEEE International Conference on Dependable Systems and

Networks, June 2005.
[29] M. Correia, N. F. Neves, L. C. Lung, and P. Verissimo, “Low complexity

Byzantine-resilient consensus,” Distributed Computing, vol. 17, no. 3,
pp. 237–249, 2005.

[30] H. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders,
“Quantifying the cost of providing intrusion tolerance in group com-
munication systems,” in Proceedings of the International Conference on

Dependable Systems and Networks, June 2002, pp. 229–238.
[31] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing

group communication system,” ACM Transactions on Information and

System Security, vol. 4, no. 4, pp. 371–406, 2001.
[32] M. Correia, N. F. Neves, L. C. Lung, and P. Verissimo, “Worm-IT

– a wormhole-based intrusion-tolerant group communication system,”
Journal of Systems and Software, vol. 80, no. 2, pp. 178–197, 2007.

[33] V. Drabkin, R. Friedman, and A. Kama, “Practical Byzantine group
communication,” 26th IEEE International Conference on Distributed

Computing Systems, 2006., pp. 36–36, 2006.
[34] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in

Proceedings of the Third Symposium on Operating Systems Design and

Implementation, Feb. 1999, pp. 173–186.
[35] H. Moniz, “Randomized intrusion-tolerant asynchronous services,”

Master’s thesis, Department of Informatics, University of
Lisbon, February 2007, DI/FCUL TR-07-2. [Online]. Available:
http://www.di.fc.ul.pt/tech-reports/07-2.pdf

[36] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: a flexible group
communication system,” Commun. ACM, vol. 39, no. 4, pp. 76–83, 1996.

[37] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr,
“Building adaptive systems using Ensemble,” Software - Practice and

Experience, vol. 28, no. 9, pp. 963–979, 1998.
[38] G. R. Wright and W. R. Stevens, TCP/IP Illustrated, Volume 2: The

Implementation. Addison Wesley, 1995.
[39] G. S. Veronese, M. Correia, L. C. Lung, and P. Verissimo, “On

the effects of finite memory on intrusion-tolerant systems,” in PRDC

’07: Proceedings of the 13th Pacific Rim International Symposium on

Dependable Computing (PRDC 2007). Washington, DC, USA: IEEE
Computer Society, 2007, pp. 401–404.

[40] M. K. Reiter, “The Rampart toolkit for building high-integrity services,”
in Theory and Practice in Distributed Systems, ser. Lecture Notes in
Computer Science. Springer-Verlag, 1995, vol. 938, pp. 99–110.

[41] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” SIGCOMM Computer Communication Review, vol. 33, no. 3,
pp. 3–12, 2003.

Henrique Moniz is a Ph.D. student at the Department of Informatics,
University of Lisboa. He is a member of the LASIGE laboratory and the
Navigators research group. He is also a teaching assistant at the University
of Lisbon. His research interests are concerned with distributed algorithms in
hostile environments. He is involved in several research projects related to
intrusion tolerance and security, including the RITAS (FCT), the CRUTIAL

and HIDENETS (EC-IST) projects, and the ReSIST NoE. More information
about him at http://lasige.di.fc.ul.pt/˜hmoniz.

Nuno Ferreira Neves is an assistant professor of the Department of Infor-
matics, University of Lisboa, and also an adjunct faculty at the Information
Network Institute, Carnegie Mellon University, for activities related to the
MSc in Information Technology - Information Security. He received a Ph.D
in Computer Science from the University of Illinois at Urbana-Champaign
(1998). His main research interests are in dependable and secure parallel and
distributed systems, and in the recent years, he has participated in several
European and National research projects in this area, namely CRUTIAL,
Resist, AJECT, RITAS and MAFTIA. His work has been recognized with
the IBM Scientific Prize in 2004 and the William C. Carter award at the
IEEE FTCS in 1998. Currently, he is member of the editorial board of the
International Journal of Critical Computer-Based Systems. More information
about him is available at http://www.di.fc.ul.pt/˜nuno.

Miguel Correia is an Assistant Professor of the Department of Informatics,
University of Lisboa Faculty of Sciences. He received a PhD in Computer
Science at the University of Lisboa in 2003. Miguel Correia is a member of the
LASIGE research unit and the Navigators research team. He has been involved
in several international and national research projects related to intrusion tol-
erance and security, including the MAFTIA and CRUTIAL EC-IST projects,
and the ReSIST NoE. He is currently the coordinator of University of Lisboa’s
degree on Informatics Engineering and an instructor at the joint Carnegie
Mellon University and University of Lisboa MSc in Information Technology
- Information Security. His main research interests are: intrusion tolerance,
security, distributed systems, distributed algorithms. More information about
him is available at http://www.di.fc.ul.pt/˜mpc.

Paulo Verissimo is currently a professor of the Department of In-
formatics (DI) of the University of Lisboa, Faculty of Sciences
(http://www.di.fc.ul.pt/˜pjv), and Director of LASIGE, a re-
search laboratory of the DI (http://lasige.di.fc.ul.pt). He is
Fellow of the IEEE. He is associate editor of the Elsevier Intl Journal
on Critical Infrastructure Protection, and past associate editor of the IEEE
Tacs. on Dependable and Secure Computing. He belonged to the European
Security & Dependability Advisory Board. He is past Chair of the IEEE
Technical Committee on Fault Tolerant Computing and of the Steering
Committee of the DSN conference, and belonged to the Executive Board
of the CaberNet European Network of Excellence. He was coordinator of
the CORTEX IST/FET project (http://cortex.di.fc.ul.pt). Paulo
Verissimo leads the Navigators research group of LASIGE, and is currently
interested in: architecture, middleware and protocols for distributed, per-
vasive and embedded systems, in the facets of real-time adaptability and
fault/intrusion tolerance. He is author of more than 130 refereed publications
in international scientific conferences and journals in the area, and co-author of
five books (e.g., http://www.navigators.di.fc.ul.pt/dssa/).


