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Abstract—In this paper, a distributed adaptive opportunistic
routing scheme for multi-hop wireless ad-hoc networks is pro-
posed. The proposed scheme utilizes a reinforcement learning
framework to opportunistically route the packets even in the ab-
sence of reliable knowledge about channel statistics and network
model. This scheme is shown to be optimal with respect to an
expected average per packet reward criterion.

The proposed routing scheme jointly addresses the issues of
learning and routing in an opportunistic context, where the
network structure is characterized by the transmission success
probabilities. In particular, this learning framework leads to
a stochastic routing scheme which optimally “explores” and
“exploits” the opportunities in the network.

Index Terms—Opportunistic routing, reward maximization,
wireless ad-hoc networks.

I. INTRODUCTION

Opportunistic routing for multi-hop wireless ad-hoc net-
works has seen recent research interest to overcome deficien-
cies of conventional routing [1]–[6] as applied in wireless
setting. Motivated by classical routing solutions in the Internet,
conventional routing attempts to find a fixed path along which
the packets are forwarded [7]. Such fixed path schemes fail to
take advantages of broadcast nature and opportunities provided
by the wireless medium and result in unnecessary packet re-
transmissions. The opportunistic routing decisions, in contrast,
are made in an online manner by choosing the next relay
based on the actual transmission outcomes as well as a rank
ordering of neighboring nodes. Opportunistic routing mitigates
the impact of poor wireless links by exploiting the broadcast
nature of wireless transmissions and the path diversity.

The authors in [1] and [6] provided a Markov decision
theoretic formulation for opportunistic routing. In particular,
it is shown that the optimal routing decision at any epoch is
to select the next relay node based on an index summarizing
the expected-cost-to-forward from that node to the destination.
This index is shown to be computable in a distributed manner
and with low complexity using the probabilistic description
of wireless links. The study in [1], [6] provided a unifying
framework for almost all versions of opportunistic routing such
as SDF [2], Geographic Routing and Forwarding (GeRaF)
[3], and EXOR [4]. The variations in [2]–[4] are due to the
authors’ choices of cost measures to optimize. For instance
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an optimal route in the context of EXOR [4] is computed so
as to minimize the expected number of transmissions (ETX).
GeRaF [3] uses the smallest geographical distance from the
destination as a criterion for selecting the next-hop.

The opportunistic algorithms proposed in [1]–[6] depend
on a precise probabilistic model of wireless connections and
local topology of the network. In practical setting, however,
these probabilistic models have to be “learned” and “main-
tained.” In other words, a comprehensive study and evaluation
of any opportunistic routing scheme requires an integrated
approach to the issue of probability estimation. Authors in
[8] provide a sensitivity analysis in which the performance
of opportunistic routing algorithms are shown to be robust to
small estimation errors. However, by and large, the question
of learning/estimating channel statistics in conjunction with
routing remains unexplored.

In this paper, we investigate the problem of opportunistically
routing packets in a wireless multi-hop network when zero or
erroneous knowledge of transmission success probabilities and
network topology is available. Using a reinforcement learning
framework, we propose an adaptive opportunistic routing
algorithm which minimizes the expected average per packet
cost for routing a packet from a source node to a destination.
Our proposed reinforcement learning framework allows for
a low complexity, low overhead, distributed asynchronous
implementation. The most significant characteristics of the
proposed solution are:
• It is oblivious to the initial knowledge of network.
• It is distributed; each node makes decisions based on its

belief using the information obtained from its neighbors.
• It is asynchronous; at any time any subset of nodes can

update their corresponding beliefs.
The idea of reinforcement learning has been previously

investigated for conventional routing in Ad-hoc networks [9]
[10]. In [9], a ticket-based probing scheme is proposed for
path discovery in MANETs to reduce probe message overhead.
This heuristic can be viewed as a very special case of our work
where the probabilistic wireless link model is replaced with
a deterministic link model. In [10], the authors attempts to
find an optimal path dynamically in response to variations in
congestion levels in various parts of the network. As discussed
in the conclusion, the issue of congestion control remains open
and entails further research.

The rest of the paper is organized as follows: In Section
II, we discuss the system model and formulate the problem.
Section III formally introduces our proposed adaptive routing
algorithm, d-AdaptOR. We then state and prove the optimality
theorem for d-AdaptOR algorithm in Section IV. In Section V,
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we present the implementation details and practical issues. We
perform simulation study of the proposed algorithm in Section
VI. Finally, we conclude the paper and discuss future work in
Section VII.

We end this section with a note on the notations used. On
the probability space (Ω,F , P ), let I : Ω→ {0, 1} denote the
indicator random variable (with respect to F), such that for
all ω ∈ Ω, A ∈ F , I(A) = 1 for all ω ∈ A, and I(A) = 0 for
all ω /∈ A. For a vector x ∈ RD, D ≥ 1, let x(l) denote the
lth element of the vector. Let ||x||v denote the weighted max-
norm with positive weight vector v, i.e. ||x||v = maxl

|x(l)|
v(l) .

Let 1 ∈ RD denote the vector with all components equal to 1.
We also use the notation Xn to represent the first n random
elements of the random sequence {Xk}∞k=1.

II. SYSTEM MODEL

We consider the problem of routing packets from a source
node o to a destination node d in a wireless ad-hoc network
of d + 1 nodes denoted by the set Θ = {o, 1, 2, . . . , d}. The
time is slotted and indexed by n ≥ 0 (this assumption is not
technically critical and is only assumed for ease of exposition).
A packet indexed by m ≥ 1 is generated at the source node
o at time τms according to an arbitrary distribution with rate
λ > 0.

We assume a fixed transmission cost ci > 0 is incurred
upon a transmission from node i. Transmission cost ci can be
considered to model the amount of energy used for transmis-
sion, the expected time to transmit a given packet, or the hop
count when the cost is equal to unity.

Given a successful transmission from node i to the set
of neighbor nodes S, the next (possibly randomized) routing
decision includes 1) retransmission by node i, 2) relaying the
packet by a node j ∈ S, or 3) dropping the packet all together.
If node j is selected as a relay, then it transmits the packet at
the next slot, while other nodes k 6= j, k ∈ S, expunge that
packet.

We define the termination event for packet m to be the
event that packet m is either received by the destination or is
dropped by a relay before reaching the destination. We define
termination time τme to be a random variable when packet m is
terminated. We discriminate amongst the termination events as
follows: We assume that upon the termination of a packet at the
destination (successful delivery of a packet to the destination)
a fixed and given positive reward R is obtained, while no
reward is obtained if the packet is terminated (dropped) before
it reaches the destination. Let rm denote this random reward
obtained at the termination time τme , i.e. it is either zero if the
packet is dropped prior to reaching the destination node or R
if the packet is received at the destination.

Let in,m denote the index of the node which transmits
packet m at time n. The routing scheme can be viewed as
selecting a (random) sequence of nodes {in,m} for relaying
packets m = 1, 2, . . . .1 As such, the expected average
per packet reward associated with routing packets along a

1Packets are indexed according to the termination order.

sequence of {in,m} upto time N is:

JN = E

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 , (1)

where MN denotes the number of packets terminated upto
time N and the expectation is taken over the events of trans-
mission decisions, successful packet receptions, and packet
generation times.

Problem (P) Choose a sequence of relay nodes {in,m} in
the absence of knowledge about the network topology such
that JN is maximized as N →∞.

In the next section we propose d-AdaptOR algorithm which
solves Problem (P). The nature of the algorithm allows nodes
to make routing decisions in distributed, asynchronous, and
adaptive manner.

Remark The problem of opportunistic routing for multiple
source-destination pairs can be effectively decomposed to the
problem above where routing from one node to a specific
destination is addressed.

III. DISTRIBUTED ALGORITHM

In this section we present the description of d-AdaptOR
scheme. In the rest of the paper, we let N (i) to denote the set
of neighbors of node i including node i itself. Let Si denote
the set of potential reception outcomes due to a transmission
from node i ∈ Θ, i.e. Si = {S : S ⊆ N (i), i ∈ S}. We refer
to Si as the state space for node i’s transmission. Furthermore,
let S = ∪i∈ΘSi. Let A(S) denote the space of all allowable
actions available to node i upon successful reception at nodes
in S, i.e. A(S) = S ∪ {f}. Finally, for each node i we define
a reward function on states S ∈ Si and potential decisions
a ∈ A(S) as

g(S, a) =

 −ca if a ∈ S
R if a = f and d ∈ S
0 if a = f and d /∈ S

.

A. Overview of d-AdaptOR

As discussed before, the routing decision at any given
time is made based on the successful outcomes and involves
retransmission, choosing the next relay, or termination. Our
proposed scheme makes such decisions in a distributed manner
via the following three-way handshake between node i and its
neighbors N (i).

1) At time n node i transmits a packet.
2) Set of nodes Sin who have successfully received the

packet from node i, transmit acknowledgment (ACK)
packets to node i. In addition to the node’s identity,
the acknowledgment packet of node k ∈ Sin includes a
control message known as estimated best score (EBS)
and denoted by Λkmax.

3) Node i announces node j ∈ Sin as the next transmitter
or announces the termination decision f in a forwarding
(FO) packet.

The routing decision of node i at time n is based on an
adaptive (stored) score vector Λn(i, ·, ·). The score vector
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Λn(i, ·, ·) lies in space Rvi , where vi =
∑
S∈Si |A(S)|, and

is updated by node i using the EBS messages Λkmax obtained
from neighbors k ∈ Sin. Furthermore, node i uses a set of
counting variables νn(i, S, a) and Nn(i, S) and a sequence of
positive scalers {αn}∞n=1 to update the score vector at time
n. The counting variable νn(i, S, a) is equal to the number
of times neighbor nodes S have received (and acknowledged)
packets transmitted from node i and corresponding routing
decision a ∈ A(S) has been taken upto time n. Similarly,
Nn(i, S) is equal to the number of times set of nodes S have
received (and acknowledged) packets transmitted from node i
upto time n. Lastly, {αn}∞n=1 is a fixed sequence of numbers
available at all nodes.

Fig. 1 gives an overview of the components of the algorithm.
Next we present further details.
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Fig. 1. Flow of the algorithm. The algorithm follows a four-stage procedure:
transmission, acknowledgment, relay, and update.

B. Detailed description of d-AdaptOR

The operation of d-AdaptOR can be described in terms of
initialization and four stages of transmission, reception and
acknowledgment, relay, and adaptive computation as shown in
Fig. 1. For simplicity of presentation we assume a sequential
timing for each of the stages. We use n+ to denote some
(small) time after the start of nth slot and (n+ 1)− to denote
some (small) time before the end of nth slot such that n <
n+ < (n+ 1)− < n+ 1.

0) Initialization:
For all i ∈ Θ, S ∈ Si, a ∈ A(S), initialize Λ0(i, S, a) =

0, ν0(i, S, a) = 0, N0(i, S) = 0, Λfmax = −R, Λimax = 0.
1) Transmission Stage:

Transmission stage occurs at time n in which node i
transmits if it has a packet.

2) Reception and Acknowledgment Stage:
Let Sin denote the (random) set of nodes that have re-
ceived the packet transmitted by node i. In the reception
and acknowledgment stage, successful reception of the
packet transmitted by node i is acknowledged to it by
all the nodes in Sin. We assume that the delay for the

acknowledgment stage is small enough (not more than
the duration of the time slot) such that node i infers Sin
by time n+.
For all nodes k ∈ Sin , the ACK packet of node k to
node i includes the EBS message Λkmax.
Upon reception and acknowledgment, the counting ran-
dom variable Nn is incremented as follows:

Nn(i, S) =

{
Nn−1(i, S) + 1 if S = Sin
Nn−1(i, S) if S 6= Sin

.

3) Relay Stage:
Node i selects a routing action ain ∈ A(Sin) according
to the following (randomized) rule parameterized by
εn(i, S) = 1

Nn(i,S)+1 :
• with probability (1− εn(i, Sin)),

ain ∈ arg max
j∈A(Si

n)

Λn(i, Sin, j)

is selected,2

• with probability εn(i,Si
n)

|A(Si
n)| ,

ain ∈ A(Sin)

is selected at random.
Node i transmits FO, a control packet which contains
information about routing decision ain at some time
strictly between n+ and (n + 1)−. If ain 6= f , then
node ain prepares for forwarding in next time slot while
nodes j ∈ Sin, j 6= ain expunge the packet. If termination
action is chosen, i.e. ain = f , all nodes in Sin expunge
the packet.
Upon selection of routing action, the counting variable
νn is updated.

νn(i, S, a) =
{
νn−1(i, S, a) + 1 if (S, a) = (Sin, a

i
n)

νn−1(i, S, a) if (S, a) 6= (Sin, a
i
n) .

4) Adaptive Computation Stage:
At time (n + 1)−, after being done with transmission
and relaying, node i updates score vector Λn(i, ·, ·) as
follows:
• for S = Sin, a = ain,

Λn+1(i, S, a) = Λn(i, S, a) + ανn(i,S,a)(
− Λn(i, S, a) + g(S, a) + Λamax

)
, (2)

• otherwise,

Λn+1(i, S, a) = Λn(i, S, a). (3)

Furthermore, node i updates its EBS message Λimax for
future acknowledgments as:

Λimax = max
j∈A(Si

n)
Λn+1(i, Sin, j).

C. Computational issues

The computational complexity and control overhead of d-
AdaptOR is low.

2In case of ambiguity, node with the smallest index is chosen.
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1) Complexity: To execute stochastic recursion (2), the
number of computations required per packet is order of
O(maxi∈Θ |N (i)|) at each time slot.

2) Control Overhead: The number of acknowledgments per
packet is order of O(maxi∈Θ |N (i)|), independent of network
size.

IV. OPTIMALITY OF D-ADAPTOR

We will now state the main result establishing the optimality
of the proposed d-AdaptOR algorithm under an assumption of
a time-invariant model of packet reception. More precisely, we
have the following assumption.

Assumption 1. The probability of successful reception of a
packet transmitted by node i at set S ⊆ N (i) of nodes
is P (S|i), independent of time and all other concurrent
transmissions.

The probabilities P (·|·) in Assumption 1 thus characterize
a packet reception model which we refer to as local broadcast
model. Note that for all S 6= S′, successful reception at
S and S′ are mutually exclusive and

∑
S⊆Θ P (S|i) = 1.

Furthermore, logically node i is always a recipient of its own
transmission, i.e. P (S|i) = 0 if i /∈ S.

The proposed local broadcast model is assumed to truly
capture the coupling of the physical layer and the media access
control (MAC) layer. In other words, the local broadcast model
takes into account signal degradation due to path loss and
multipath fading as well as captures the interference produced
by other transmitting nodes. Note that, our model together with
Assumption 1 imply an underlying MAC whose operation is
controlled at a distinct layer and independently of the routing
decisions. Furthermore, the implicit existence of a MAC
scheme allows for a set of more advanced MAC schemes such
as Zig-Zag [11]. Finally, the identically distributed assump-
tion on successful transmissions imposes a time-homogeneity
on the operation of the network and significantly restricts
the topology changes of the network. In Sections V and
VII, we address the severity and implications of the above
consequences of Assumption 1. In particular, we will show
that d-AdaptOR exhibits many of its desirable properties and
performance improvements in practice despite relaxation of
the analytical assumptions.

Let P be the sample space of the random probability
measures for the local broadcast model. Specifically, P :=
{p ∈ R2d × Rd : p is a non-square left stochastic matrix}.
Moreover, let PP be the trivial σ-field generated by the
local broadcast model P ∈ P (sample point in P), i.e.
PP = {P,P\P, ∅,P}.3 Let Sin be the set of nodes that have
received the packet due to transmission from node i at time
n, while ain denotes the corresponding routing decision node
i takes at time n.4 A distributed routing policy is a collection
φ = {φi}i∈Θ of routing decisions taken at nodes i ∈ Θ, where
φi denotes a sequence of random actions φi = {ai0, ai1, . . .}
for node i. The policy φ is said to be admissible if for all

3σ-field captures the knowledge of the realization of local broadcast model
and assumes a well-defined prior on these models.

4Sin = ∅, ain = f if node i does not transmit at time n.

nodes i ∈ Θ, S ∈ Si, a ∈ A(S), the event {ain = a} belongs
to the σ-field Hin generated by the observations at node i, i.e.⋃
j∈N (i){S

j
0, a

j
0, . . . , S

j
n−1, a

j
n−1, S

j
n}. Let Φ denote the set of

such admissible policies. These policies are implementable in
a distributed manner under the following assumption.

Assumption 2. The successful reception at set S due to
transmission from node i is acknowledged perfectly to node i.

With the above notations and assumptions, the following
theorem establishes the optimality of d-AdaptOR, i.e. d-
AdaptOR denoted by φ∗ ∈ Φ, maximizes the expected average
per packet reward obtained in (1) as N →∞.

Theorem 1. Suppose
∑∞
n=0 αn = ∞,

∑∞
n=0 α

2
n < ∞, and

Assumptions 1 and 2 hold. Then for all φ ∈ Φ,

lim
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




≥ lim sup
N→∞

Eφ

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




where Eφ
∗

and Eφ are the expectations taken with respect to
policies φ∗ and φ respectively.5

Next we prove the optimality of d-AdaptOR in two steps.
In the first step, we show that Λn converges in an almost sure
sense. In the second step we use this convergence result to
show that d-AdaptOR is optimal for Problem (P).

A. Convergence of Λn
Let U :

∏
i Rvi →

∏
i Rvi be an operator on vector Λ such

that,

(UΛ)(i, S, a) = g(S, a) +
∑
S′∈Sa

P (S′|a) max
j∈A(S′)

Λ(a, S′, j). (4)

Let Λ∗ ∈
∏
i Rvi denote the fixed point of operator U ,6 i.e.

Λ∗(i, S, a) = g(S, a) +
∑
S′∈Sa

P (S′|a) max
j∈A(S′)

Λ∗(a, S′, j). (5)

The following lemma establishes the convergence of recursion
(2) to the fixed point of U , Λ∗.

Lemma 1. Let

(J1) Λ0(·, ·, ·) = 0, Λfmax = −R, Λimax = 0 for all i ∈ Θ,
(J2)

∑∞
n=0 αn =∞,

∑∞
n=0 α

2
n <∞.

Then iterate Λn obtained by the stochastic recursion (2)
converges to Λ∗ almost surely.

The proof uses known results on the convergence of a
certain recursive stochastic process as presented by Fact 3 in
Appendix A.

5This is a strong notion of optimality and implies that the proposed
algorithm’s expected average reward is greater than the best case performance
(lim sup) of all policies [12, Page 344 ].

6Existence and uniqueness of Λ∗ is provided in Appendix A.
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B. Proof of optimality

Using the convergence of Λn we show that the expected
average per packet reward under d-AdaptOR is equal to the
optimal expected average per packet reward obtained for a
genie-aided system where the local broadcast model is known
perfectly.

In proving the optimality of d-AdaptOR, we take cue from
known results associated with a closely related Auxiliary
Problem (AP). In the Auxiliary Problem (AP), there exists
a centralized controller with full knowledge of the local
broadcast model P (·|·) as well as the transmission outcomes
across the network [1], [6]. For Auxiliary Problem (AP), a
routing policy is a collection π = {πi}i∈Θ of routing decisions
taken for nodes i ∈ Θ at the centralized controller, where
πi denotes a sequence of random actions πi = {ai0, ai1, . . .}
for node i. The routing policy π is said to be admissible for
Auxiliary Problem (AP) if the event {ain = a} belongs to the
product σ-field Fn = PP ×

∏
iHin [13]. In this Auxiliary

Problem (AP), let Π denote the set of admissible policies for
Auxiliary Problem (AP). The reward associated with policy
π ∈ Π for routing a single packet m from the source to the
destination is then given by

Jπ({o}) := Eπ

rm −
τm

e −1∑
n=0

cin,m

 |F0

 , (6)

where F0 = PP . Now, in this setting, we are ready to
formulate the following Auxiliary Problem (AP) as a classical
shortest path Markov Decision Problem (MDP).

Auxiliary Problem (AP) Find an optimal policy π∗ such
that,

J∗({o}) = Jπ
∗
({o}) = sup

π∈Π
Jπ({o}). (7)

Remark 1. The existence of an admissible policy π∗ ∈ Π
achieving the supremum on the right hand side of (7) is a
result of Theorem 7.1.9 in [12].

Auxiliary Problem (AP) has been extensively studied in [1],
[6], [14] and the following theorem has been established in [6].

Fact 1. [6, Theorem 2.1] There exists a function π̄∗ :
{Si}i∈Θ → Θ ∪ {f} such that π∗ = {ai0, ai1, . . .}i∈Θ is
an optimal policy for Auxiliary Problem (AP), where ain =
π̄∗(Sin).7

Furthermore, π̄∗ is such that

π̄∗(S) ∈ arg max
j∈A(S)

V ∗(j), (8)

where (value) function V ∗ : Θ ∪ {f} → R+ is the unique
solution to the following fixed point equation:

V ∗(d) = R (9)

V ∗(i) = max({−ci +
∑
S′

P (S′|i)(max
j∈S′

V ∗(j))}, 0) (10)

V ∗(f) = 0. (11)

7In other words there exists a stationary, deterministic, and Markov optimal
policy for Auxiliary Problem (AP).

Moreover, V ∗(j) is the maximum expected reward for routing
a packet from node j to destination d, i.e.

V ∗(j) = sup
π∈Π

Jπ({j}).

Lastly,
Fact 2. [14, Proposition 4.3.3] function V ∗ : Θ∪{f} → R+

is unique.
Lemma 2 below states the relationship between the solution

of Problem (P) and that of the Auxiliary Problem (AP). More
specifically, Lemma 2 shows that V ∗(o) is an upper bound for
the solution to Problem (P).

Lemma 2. Consider any admissible policy φ ∈ Φ for
Problem (P). Then for all N = 1, 2, . . . ,

Eφ

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 ≤ V ∗(o).

Proof: The proof is given in Appendix B. Intuitively the
result holds because the set of admissible policies in (P) is a
subset of admissible policies in (AP), i.e. Φ ⊂ Π.

Lemma 3 gives the achievability proof for Problem (P) by
showing that the expected average per packet reward of d-
AdaptOR is no less than V ∗(o).

Lemma 3. For any δ > 0,

lim inf
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 ≥ V ∗(o)− δ.

Proof: The proof is given in Appendix C.
Lemmas 2 and 3 imply that

lim
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




exists and is equal to V ∗(o) establishing the proof of Theorem
1.

V. PROTOCOL DESIGN AND IMPLEMENTATION ISSUES

In this section we describe an 802.11 compatible implemen-
tation for d-AdaptOR.

A. 802.11 compatible implementation

Implementation of d-AdaptOR, analogous to any oppor-
tunistic routing scheme involves the selection of a relay
node from a candidate set of nodes that have received and
acknowledged a packet successfully. One of the major chal-
lenges in devising d-AdaptOR algorithm is the design of
802.11 compatible acknowledgment mechanism at the MAC
layer. Below we propose a practical and simple to implement
acknowledgment architecture.

For each neighbor node j ∈ N (i), the transmitter node
i reserves a virtual time slot of duration TACK + TSIFS ,
where TACK is the duration of the acknowledgment packet
and TSIFS is the duration of Short InterFrame Space (SIFS)
[15]. The transmitter i then piggy-backs a priority ordering of
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nodes N (i) with each data packet transmitted. The priority
ordering determines the virtual time slot in which a candidate
node transmits an acknowledgment. Nodes in the set Si that
have successfully received the packet then transmit acknowl-
edgment packets sequentially in the reserved virtual time slots
in the order determined by the transmitter node. For example,
in the linear network shown in Fig. 2, if node o piggy-backs
the order {1,2}, then node 1 transmits an ACK first and later
node 2 transmits an ACK. If node 1 does not receive the packet
successfully from node o, node 1 does not transmit an ACK
and a duration of TACK + TSIFS corresponding to node 1 is
not utilized.

For receiving ACKs, each transmitting node i waits for a
duration of Twait = |N (i)|(TACK +TSIFS). After each node
in the set Si has acknowledged or Twait timer has expired,
node i transmits a FOrwarding control packet (FO). If timer
Twait has expired and no ACK has been received, then node
i either drops the packet or retransmits. If priority of node
j ∈ Si is l, 1 ≤ l ≤ |N (i)|, then it waits for a duration of
TwaitFO = (|N (i)| − l + 1)(TACK + TSIFS) to receive a
FO. If TwaitFO expires and no FO packet has been received,
then the corresponding candidate nodes drop the received data
packet. Fig 3 shows a typical sequence of control packets for
topology in Fig 2.

1o d2

po1 p2d

p02

p12

Fig. 2. With probability pij , a packet transmitted by node i is successfully
received by node j

Data

Ack

Ack

SIFS

SIFS

SIFS

Node 1

Node o

Node 2

FO
Node o

Data

SIFS

Node 1

Fig. 3. Typical packet transmission sequence for d-AdaptOR

In addition to the acknowledgment scheme, d-AdaptOR
requires modifications to the 802.11 MAC frame format. Fig.
4 shows the modified MAC frame formats required by d-
AdaptOR. The reserved bits in the type/subtype fields of the

frame control field of the 802.11 MAC specification are used
to indicate whether the rest of the frame is a d-AdaptOR
data frame, a d-AdaptOR ACK, or a FO. This enables the d-
AdaptOR to communicate and be fully compatible with other
802.11 devices.

The data frame contains the candidate set in priority order,
the payload, and the 802.11 Frame Check Sequence. The
acknowledgment frame includes the data frame senders ad-
dress and the feedback EBS Λmax. The FO packet is exactly
the same as a standard 802.11 short control frame, but uses
different subtype value.

d-AdaptOR data packet format

2 2 6 6 6 2

2 2 6 2 4

Duration
ID

Addr 1 Addr 2 Addr 3

Addr 4

Sequence
Control

CRCPayload

6 0-2312 4

Frame

Control

Candidate        

set

Duration

ID Receiver Addr CRC
Frame

Control

2 2 6 4

FO  packet format

Duration
ID Receiver Addr EBS CRC

Frame
Control

ACK  packet format

Fig. 4. Frame structure of the data packet, acknowledgment packet, and FO
packet

B. d-AdaptOR in non-idealized setting

1) Loss of ACK and FO packets: Interference or low
SNR can cause loss of ACK and FO packets. Loss of an
ACK packet results in an incorrect estimation of nodes that
have received the packet and thus affects the performance
of the algorithm. Loss of FO packet negatively impacts the
throughput performance of the network. In particular, loss of
FO packet can result in the drop of data packet at all the
potential relays, reducing the throughput performance.

2) Increased Overhead: d-AdaptOR adds a modest addi-
tional overhead to standard 802.11 due to the added acknowl-
edgment/handshake structure. Assuming a 802.11b physical
layer operating at 11 Mbps with a SIFS time of 10µs,
preamble duration of 20µs, Physical Layer Convergence Pro-
tocol (PLCP) header duration of 4µs and 512 byte frame
payloads, the overhead of an d-AdaptOR data frame with three
candidates is compared with unicast 802.11 in Table I. It is

TABLE I
OVERHEAD COMPARISONS

Data Frame ACK Total
802.11 unicast 397µs 46µs 443µs

d-AdaptOR 400µs 125µs 525µs

clear that the overhead increases linearly with the number of
neighbors.
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Note that the overhead cost can be reduced by restricting
the number of nodes in the candidate list of MAC header to
a given number, MAX-NEIGHBOUR. The unique ordering
for the nodes in the candidate set is determined by prior-
itizing the nodes with respect to Λn(i, {i, j}, j), j ∈ N (i)
and then choosing the MAX-NEIGHBOUR highest priority
nodes.8 Needless to say that such limitation will sacrifice the
optimality of d-AdaptOR for a lower overhead.

3) Choice of parameters: To ensure an acceptable through-
put, the value of reward, R, must be chosen sufficiently high.
However, beyond a given threshold (depending on the network
topology), the value of R does not affect asymptotic perfor-
mance of the algorithm. The convergence rate of stochastic
recursion (2) strongly depends on choice of sequence {αn}.
It converges slowly with slowly decreasing sequence {αn}
and results in less variance in the estimates of Λn, while
fast decreasing sequence of {αn} causes large variance in the
estimates of Λn.

VI. SIMULATION STUDY

In this section, we provide simulation results in which
the performance of d-AdaptOR is compared against suitably
chosen candidates: Stochastic Routing (SR) [1] (SR is the
distributed implementation of policy π∗ discussed in Section
IV-B), EXOR [4] and a conventional routing algorithm Ad
hoc On-Demand Distance Vector Routing (AODV) [15]. Both
SR and EXOR are distributed mechanisms in which the
probabilistic structure of the network is used to implement
opportunistic routing algorithms. As a result, their perfor-
mance will be highly dependent on the precision of empirical
probability associated with link, pij . In fact, authors in [8]
have identified network topologies and examples in which
small errors in empirical probabilities incur significant loss
of performance. To provide a fair comparison, hence, we
have considered modified versions of SR and EXOR in which
the algorithms adapt pij to the history of packet reception
outcomes, while rely on the updates to make routing decisions
(separated scheme of estimation and routing).

Our simulations are performed in QualNet. Simulations
consist of a grid topology of 16 nodes as shown in Fig. 5(a)
each equipped with 802.11b radios transmitting at 11 Mbps.
The wireless medium is modeled as to include Rician fading
and Log-normal shadowing with mean 4dB and the path loss
follows the two-ray model in [16] with path exponent of 3.
Note that the choice of indoor environment is motivated by
the findings in [17] where opportunistic routing is found to
provide better diversity of transmission outcomes.

Packets are generated according to a CBR source with rate
10 packets/sec. They are assumed to be of length 512 bytes
equipped with simple CRC error detection. The acknowledg-
ment packets are short packets of length 24 bytes transmitted
at rate of 11 Mbps, while FO packets are transmitted at reliable
lower rate of 1Mbps. The lower transmission rate for FO
packets is used as it increases the reliability of the packets to
avoid issues discussed in Section V-B. Cost of transmission

8In case of ambiguity, node with the smallest index is chosen.

is assumed to be one unit, while reward for successfully
delivering a packet to the destination is assumed to be 20.

Fig. 5(b) plots the expected average per packet reward
obtained by the candidate routing algorithms versus network
operation time. The optimal algorithm with complete knowl-
edge of link probabilities (presented in Section IV-B) is also
plotted for comparison. We first note that as expected, ADOV
performs poorly compared to the opportunistic schemes as
it is strictly suboptimal. In particular, Fig. 5(b) shows that
the d-AdaptOR algorithm outperforms opportunistic schemes
EXOR and SR by at least 5% given sufficient number of packet
deliveries. Fig. 5(b) shows that SR performs poorly relative to
d-AdaptOR algorithm since it fails to explore possible choices
of routes and often results in strictly suboptimal routing policy.

This figure also shows that the randomized routing decisions
employed by d-AdaptOR work as a double-edge sword. This
is the mechanism through which network opportunities are
exhaustively explored until the globally optimal decisions are
constructed. At the same time, these randomized decisions
lead to a short term performance loss. One should note that
due to the exploratory nature of the d-AdaptOR algorithm,
during initial startup time EXOR and SR perform better
than d-AdaptOR. This in fact is reminiscent of the well-
known exploration/exploitation trade-off in stochastic control
and learning literature.

To clearly manifest the differences in the performance on the
rate of convergence, one can define a finite horizon quantity,
regret, as [18]

Re(N) = E

MN∑
m=1

V ∗(o)−

rm − τm
e −1∑
n=τm

s

cin,m

 . (12)

Regret demonstrates the performance of a routing policy over
a finite horizon. Hence, it provides an appropriate measure of
comparison in scenarios with finitely many packets. Fig. 5(c)
again shows that d-AdaptOR outperforms EXOR and SR after
sufficient time.
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Fig. 6. Throughput comparisons for d-AdaptOR, SR, EXOR, AODV

Throughput is a benchmark criterion to measure net-
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Fig. 5. d-AdaptOR vs distributed SR, EXOR, and AODV. Parameters: L=25 meters, αn = 1
n log(n)

, R = 20, ci = 1 for all i.

work performance.9 Fig. 6 compares the average throughput
obtained by the three opportunistic routing algorithms (d-
AdaptOR, EXOR, and SR) and AODV as the distance L in
Fig. 2 is varied. Note that for low and high values of L,
the diversity is low while medium values of L provide high
level of diversity (for low values of L network becomes single
hop while for large values of L network gets disconnected).
Opportunistic routing schemes perform better as compared
to the conventional routing when the network provides high
diversity.

Finally, we investigate the performance result for a random
topology in Fig. 7(a), wherein 16 nodes are uniformly dis-
tributed over an area of 90m × 90m and all other parameters
are kept the same as those in the grid topology of Fig. 5(a). Fig.
7(b), 7(c) plots the average reward and regret respectively for
the candidate routing algorithms. The results are inline with
conclusions for the grid topology in Fig. 5(a). It should be
noted that, optimality of d-AdaptOR holds for all topologies,
however it may not outperform other algorithms (SR, EXOR)
in certain topologies.

VII. CONCLUSIONS

In this paper, we proposed d-AdaptOR, an adaptive routing
scheme which maximizes the expected average per packet
reward from a source to a destination in the absence of any
knowledge regarding network topology and link qualities. d-
AdaptOR allows for a practical distributed implementation
with provably optimal performance under idealized assump-
tions on stationarity of network and reliability of acknowledg-
ment scheme.

The performance of d-AdaptOR is also investigated in
practical settings via simulations. Simulation results show that
d-AdaptOR outperforms the existing opportunistic protocols
in which statistical link qualities are empirically built and the
routing decisions are greedily adapted to the empirical link
models.

The long term average reward criterion investigated in this
paper is somewhat limited in discriminating among various
adaptive schemes with optimal average reward per packet. This
is mostly due to the inherent dependency of the long term

9Throughput is directly related to the quantity defined in (1) for stable
arrival rates and transmission cost as hop count.

average reward on the tail events. To capture the performance
of various adaptive schemes e.g. convergence rate, it is desir-
able to study the regret as defined in (12). An important area
of future work comprises of developing fast converging algo-
rithms which optimize the regret as a performance measure of
interest.

The design of routing protocols need consideration of
congestion control along with the throughput performance
[19], [20]. Our work, however does not consider the issue
of congestion control. Incorporating congestion control in
opportunistic routing algorithms to minimize expected delay
in an oblivious network is an area of future research.

Last but not least, the broadcast model used in this paper
assumes a decoupled operation at the MAC and network layer.
While this assumption seems reasonable for many popular
MAC schemes based on random access philosophy, it ignores
the potentially rich interplays between scheduling and routing
which arise in scheduling TDMA-based schemes.

APPENDIX

A. Proof of Lemma 1

Lemma 1. Let
(J1) Λ0(·, ·, ·) = 0, Λfmax = −R, Λimax = 0 for all i ∈ Θ,
(J2)

∑∞
n=0 αn =∞,

∑∞
n=0 α

2
n <∞.

Then iterate Λn obtained by the stochastic recursion (2)

Λn+1(i, S, a) = Λn(i, S, a) + ανn(i,S,a)(
− Λn(i, S, a) + g(S, a) + Λamax

)
,

converges to Λ∗ almost surely.
To prove Lemma 1, we note that the adaptive computation

given by (2) utilizes a stochastic approximation algorithm to
solve the MDP associated with Problem (AP). To study the
convergence properties of this stochastic approximation, we
appeal to known results in the intersection of learning and
stochastic approximation given below.

In particular, consider a set of stochastic sequences on RD,
denoted by {xn, ᾱn,Mn+1}, and the corresponding filtration
Gn, i.e. the increasing σ-field generated by {xn, ᾱn,Mn+1},
satisfying the following recursive equation

xn+1 = xn + ᾱn[U(x′n)− xn +Mn+1],



9

o

d

(a) Node topology : Nodes placed uniformly over
an area of 90m × 90m

100 200 300 400 500
0

5

10

15

20

seconds

A
ve

ra
ge

 R
ew

ar
d 

P
er

 P
ac

ke
t

 

 

d−AdaptOR
EXOR
SR
AODV
Optimal

(b) Expected Average Reward

0 100 200 300 400 500
0

1

2

3

4
x 10

4

R
eg

re
t

Seconds

 

 

d−AdaptOR
EXOR
SR
AODV

(c) Regret

Fig. 7. d-AdaptOR vs distributed SR, EXOR, and AODV. αn = 1
n log(n)

, R = 20, ci = 1 for all i.

where U is a mapping from RD into RD and x′n =(
xn1

(1), xn2
(2), ..., xnD

(D)
)
, 0 ≤ nj ≤ n, j ∈ {1, 2, ..., D},

is a vector of possibly delayed components of xn. If no
information is outdated, then nj = n for all j and x′n = xn.
The following important result on the convergence of xn is
provided in [21].

Fact 3 (Theorem 1, Theorem 2 [21]). Assume
{xn, ᾱn,Mn+1} and U satisfy the following conditions:

(G1) For all n ≥ 0 and 1 ≤ l ≤ D, 0 ≤ ᾱn(l) ≤ 1 a.s.;
for 1 ≤ l ≤ D,

∑∞
n=0 ᾱn(l) =∞ a.s.;

for 1 ≤ l ≤ D,
∑∞
n=0 ᾱ

2
n(l) <∞ a.s.

(G2) Mn is a martingale difference with finite second moment,
i.e. E{Mn+1|Gn} = 0, and there exist constants A and
B such that E{M2

n+1|Gn} ≤ A+B(maxn′≤n ||xn′ ||)2.
(G3) There exists a positive vector v, scalers β ∈ [0, 1) and

C ∈ R+, such that

||U(x)||v ≤ β ||x||v + C.

(G4) Mapping U : RD → RD satisfies the following proper-
ties:

1) U is component-wise monotonically increasing;
2) U is continuous;
3) U has a unique fixed point x∗ ∈ RD ;
4) U(x)−r1 ≤ U(x−r1) ≤ U(x+r1) ≤ U(x)+r1,

for any r ∈ R+.

(G5) For any j, nj →∞ as n→∞.

Then the sequence of random vectors xn converges to the fixed
point x∗ almost surely.

Let Gn be the increasing σ-field generated by random
vectors (Λn, Sin, a

i
n, νn). Let xn = Λn be the random vector of

dimension D =
∑
i∈Θ

∑
S∈Si |A(S)|, generated via recursive

equation (2). Furthermore,

(UΛn)(i, S, a) = g(S, a) +
∑
S′∈Sa

P (S′|a) max
j

Λn(a, S′, j),

ᾱn(i, S, a) = ανn(i,S,a)I(Sin = S, ain = a).

Let {Mn+1} be a random vector whose (i, S, a)th element
is constructed as follows:

Mn+1(i, S, a) = max
j

Λna
(a, Sana

, j)

−
∑
S′∈Sa

P (S′|a) max
j

Λna
(a, S′, j),

where 0 ≤ na ≤ n, and Sana
is the most recent state visited

by node a.
Now we can rewrite (2) and (3) as in the form investigated

in Fact 3, i.e.

Λn+1(i, S, a) = Λn(i, S, a) + ᾱn(i, S, a)

(
(UΛna)(i, S, a)

−Λn(i, S, a) +Mn+1(i, S, a)

)
.

The remaining steps of the proof reduces to verifying
statements (G1)-(G5). This is verified in Lemma 4 below.

Lemma 4. (Λn, ᾱn,Mn+1) satisfy conditions (G1)-(G5).

Proof:
• (G1): It is shown in Lemma 6 that algorithm d-AdaptOR

guarantees that every state-action is attempted infinitely
often (i.o.). Hence,
∞∑
n=0

ᾱn(i, S, a) =
∞∑
n=0

ανn(i,S,a)I(Sin = S, ain = a)

≥ I((i, S, a) visited i.o. )(
∞∑
n=0

αn) =∞.

However,
∞∑
n=0

ᾱ2
n(i, S, a) ≤

∑
i,S,a

∞∑
n=0

α2
νn(i,S,a)I(Sin = S, ain = a)

≤
∑
i∈Θ

|Si||d+ 1|
∞∑
n=0

α2
n <∞.

• (G2):

E[Mn+1|Gn, na] = ESa [max
j

Λna(a, Sa, j)]

−
∑
S′

P (S′|a) max
j

Λna(a, S′, j)

= 0.
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E[Mn+1|Gn] = Ena [E[Mn+1|Gn, na]] = 0.

E[M2
n+1|Gn, na] ≤ ESa [(max

j
Λna

(a, Sa, j))2]

≤ max
Sa

max
j

(Λna
(a, Sa, j))2

≤ ||Λna
||2 .

E[M2
n+1|Gn] = Ena

[
E[M2

n+1|Gn, na]
]

≤ Ena
[||Λna

||2]
≤ max

n′≤n
||Λn′ ||2 .

Therefore Assumption (G2) of Fact 3 is satisfied.
• (G3): Let Zd =

{
S : d ∈ S, S ∈ {Si}i∈Θ

}
denote the set

of states which contain the destination node d. Moreover,
let Zid = {S : d ∈ S, i ∈ Θ, S ∈ Si}. Let τπZd

be the
hitting time associated with set Zd and policy π ∈ Π, i.e.
τπZd

= min
{
n > 0 : ∃S ∈ Zd, S ∈ {Sin}i∈Θ

}
. Policy π

is said to be proper if Prob(τπZd
< ∞|F0) = 1. Let

us now fix a proper deterministic stationary policy π ∈
Π. Existence of such a policy is guaranteed from the
connectivity between o and d. Let F be the termination
state which is reached after taking the termination action
f . Let us define a policy dependent operator Lπ ,

(LπΛ)(i, S, a) = g(S, a) +
∑

S′ /∈Za
d
∪F

P (S′|a)Λ(a, S′, π(S′)).

(13)

We then consider a Markov chain with states (i, S, a) and
with the following dynamics: from any state (i, S, a), we
move to state (a, S′, π(S′)), with probability P (S′|a).
Thus, subsequent to the first transition, we are always
at a state of the form (i, S, π(S)) and the first two
components of the state evolve according to policy π.
As π is assumed proper, it follows that the system with
states (i, S, a) also evolves according to a proper policy.
We construct a matrix Q with each entry corresponding
to the transition from state (i, S) to (π(S), S′) with value
equal to P (S′|π(S)) for all S /∈ Zid ∪F, S′ /∈ Z

π(S)
d ∪F

for all i.
Since policy π is proper, the maximum eigenvalue of
matrix Q is strictly less than 1. As Q is a non-negative
matrix, Perron Frobenius theorem guarantees the exis-
tence of a positive vector w with components w(i,S,a)

and some β ∈ [0, 1) such that∑
S′ /∈Za

d∪F

P (S′|a)w(π(S),S′,π(S′)) ≤ βw(i,S,a). (14)

From (14), we have a positive vector v such that
||(LπΛ)− Λπ||v ≤ β ||Λ− Λπ||v , where Λπ is the fixed
point of equation Λ = LπΛ.
From the definition of U (4) and Lπ (13) we have
|(UΛ)(·, ·, ·)| ≤ |(LπΛ)(·, ·, ·)|. Using this and the tri-

angle inequality, we obtain

||UΛ||v ≤ ||LπΛ||v
≤ ||LπΛ− LπΛπ||v + ||LπΛπ||v
≤ β ||Λ− Λπ||v + ||Λπ||v
≤ β ||Λ||v + 2 ||Λπ||v ,

establishing the validity of (G3).
• (G4): Assumption (G4) is satisfied by operator U using

following fact:
Fact 4. [Proposition 4.3.1 [14]] U is monotonically
increasing, continuous, and satisfies U(Λ)−r1 ≤ U(Λ−
r1) ≤ U(Λ + r1) ≤ U(Λ) + r1, r > 0.
Λ∗ is a fixed point of U . From (5) and (9)-(11) we obtain

max
j∈A(S)

V ∗(j) = max
j∈A(S)

Λ∗(i, S, j) +R. (15)

Furthermore, using (5) and (15), for all i ∈ Θ

Λ∗(i, S, a) = g(S, a) +
∑
S′

P (S′|a) max
j∈A(S′)

V ∗(j)−R. (16)

The existence of fixed point Λ∗ follows from (16), while
uniqueness of Λ∗ follows from uniqueness of V ∗ (Fact
2).

• (G5): Suppose na 9 ∞ as n → ∞. Therefor, there
exists N such that na < N for all n. This means that the
number of times that node a has transmitted a packet is
bounded by N . But this contradicts Lemma 6 which says
that each state-action pair (S, a) is visited i.o. Therefore
na →∞ as n→∞ for all a, and condition (G5) holds.

Thus Assumptions (G1)-(G5) are satisfied. Hence, from Fact
3 our iterate (2) converges almost surely to Λ∗, the unique
fixed point of U .

Lemma 5. If policy φ∗ is followed, then action a ∈ A(S) is
selected i.o. if state S ∈ S is visited i.o.

Proof:

Define random variable Kn = I(Sin = S
for any i ∈ Θ|φ∗). Let Kn be the σ-field generated

by (K1,K2, . . . ,Kn). Let An = {ω : ain = a, Sin =
S for any i ∈ Θ|φ∗}.

From the construction of the algorithm it is clear that An is
Kn measurable. Now it is clear that under policy φ∗, An+1 is
independent of Kn−1 given Kn and Nn(i, S), i ∈ Θ. Define,

P (An+1|Kn, Nn(i, S) for all i ∈ Θ)

≥

{
0 if Kn = 0
mini∈Θ εn(i,S)
|A(S)| if Kn = 1 (17)
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∞∑
n=0

Prob(An+1|Kn)

≥
∞∑
n=0

Prob(An+1|Kn, Nn(i, S) for all i ∈ Θ)

≥ I( S is visited i.o.)
∞∑
n=0

min
i∈Θ

εn(i, S)
|A(S)|

≥ I( S is visited i.o.)
|A(S)|

∞∑
n=0

1∑
i∈ΘNn(i, S) + 1

≥ I( S visited i.o. )
|A(S)|

∞∑
n=0

1
n(d+ 1) + 1

=∞. (18)

Next step of the proof is based on the following fact.

Fact 5 (Corollary 5.29, [22], (Extended Borel-Cantelli
Lemma)). Let Kk be an increasing sequence of σ-fields and
let Ak be Kk-measurable. If

∑∞
k=1 Prob(Ak|Kk−1) =∞ then

P (Ak i.o.) = 1.

Thus, from Fact 5, a ∈ A(S) is visited i.o, if S is visited
i.o.

Lemma 6. If policy φ∗ is followed, then each state-action
(S, a) is visited infinitely often.

Proof: We say states S, S′ ∈ S communicate if there
exists a sequence of actions {a1, . . . ak, k < ∞} such that
probability of reaching state S′ from state S following the
sequence of actions {a1, . . . ak} is greater than zero. Using
Lemma 5, if state S ∈ S is visited i.o., then every action
a ∈ A(S) is chosen i.o. as set A(S) is finite. Hence, states
S′ such that P (S′|a) > 0, S′ ∈ S, are visited i.o. if S is
visited i.o. By Lemma 5 every action a′ ∈ A(S′) is also visited
i.o. Following similar argument and repeated application of
Lemma 5, every state S′′ ∈ S, which communicates with
state S and actions a ∈ A(S′′) are visited i.o.

Under the assumption of the packet generation process in
Section II, a packet is generated i.o. at the source node o. Thus
state {o} is reached i.o. The construction of set S is such that
every state S ∈ S communicates with state {o}. Thus each
(S, a) is visited i.o since |S| is finite.

B. Proof of Lemma 2

Lemma 2. Consider any admissible policy φ ∈ Φ for
Problem (P). Then

Eφ

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 ≤ V ∗(o).

Proof: Since π∗ is the optimal policy for one packet, for
each packet m and for any feasible policy φ ∈ Φ,

V ∗(o) = Eπ
∗

rm − τm
e −1∑
n=τm

s

cin,m
|F0


≥ Eφ

rm − τm
e −1∑
n=τm

s

cin,m

 .

Eφ

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




≤ Eφ
(

1
MN

MN∑
m=1

V ∗(o)

)
= V ∗(o).

C. Proof of Lemma 3

Lemma 3. For any δ > 0,

lim inf
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m


 ≥ V ∗(o)− δ.

Proof: From (5), (9)-(11), and (15) we obtain the follow-
ing equality for all i ∈ Θ, S ∈ Si,

arg max
j∈A(S)

V ∗(j) = arg max
j∈A(S)

Λ∗(i, S, j) . (19)

Let

b = min
i∈Θ

min
S∈Si

min
j,k∈A(S)

Λ∗(i,S,j)6=Λ∗(i,S,k)

|Λ∗(i, S, j)− Λ∗(i, S, k)|.

Lemma 1 implies that, in an almost sure sense, there exists
packet index m1 < ∞ such that for all n > τm1

s , i ∈ Θ,
S ∈ Si, a ∈ A(S),

|Λn(i, S, a)− Λ∗(i, S, a)| ≤ b/2.

In other words, from time τm1
s onwards, given any node i ∈ Θ

and set S ∈ Si, the probability that d-AdaptOR chooses an ac-
tion a ∈ A(S) such that Λ∗(i, S, a) 6= maxj∈A(S) Λ∗(i, S, j)
is upper bounded by εn(i, S). Furthermore, since Nn(i, S)→
∞ (Lemma 6), for a given γ > 0, with probability 1, there
exists a packet index m2 < ∞ such that for all n > τm2

s ,
maxi,S εn(i, S) < γ.

Let m0 = max{m1,m2}. For all packets with index
m ≤ m0 the overall expected reward is upper-bounded by
m0R < ∞ and lower-bounded by −m0

λ dmaxi ci > −∞,
hence, their presence does not impact the expected average
per packet reward. Consequently, we only need to consider
the routing decisions of policy φ∗ for packets m > m0.

Consider the mth packet generated at the source. Let Bmk
be an event for which there exist k instances when d-AdaptOR
routes packet m differently from the possible set of optimal
actions. Mathematically speaking, event Bmk occurs iff there
exists instances τms ≤ nm1 ≤ nm2 . . . nmk ≤ τme such that for
all l = 1, 2, . . . , k

Λ∗(inm
l ,m

, Snm
l
, anm

l
) 6= max

j∈A(Snm
l

)
Λ∗(inm

l ,m
, Snm

l
, j),

where Snm
l

is the set of nodes that have successfully received
packet m at time nml due to transmission from node inm

l ,m
.

We call event Bmk a mis-routing of order k. For m > m0,

Prob(Bmk ) ≤ (max
i,S

εn(i, S))k ≤ γk.
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Now for packets m > m0, let us consider the expected
differential reward under policies π∗ and φ∗:

Eπ
∗

rm −
τm

e −1∑
n=τm

s

cin,m |F0


−Eφ

∗

rm −
τm

e −1∑
n=τm

s

cin,m




= V ∗(o)−Eφ
∗

rm −
τm

e −1∑
n=τm

s

cin,m




=
∞∑
k=0

Eφ
∗

V ∗(o)−
rm −

τm
e −1∑
n=τm

s

cin,m

 |Bmk


×Prob(Bmk )

≤
∞∑
k=0

k R Prob(Bmk ) (20)

≤ R

∞∑
k=1

kγk (21)

= δ, (22)

where δ = γR
(1−γ)2 . Inequality (20) is obtained by noticing that

maximum loss in the reward occurs if algorithm d-AdaptOR
decides to drop packet m (no reward) while there exists a node
j in the set of potential forwarders such that V ∗(j) ≈ R.

Thus, for all δ > 0 the expected average per packet reward
under policy φ∗ is bounded as

lim inf
N→∞

Eφ
∗

 1
MN

MN∑
m=1

rm −
τm

e −1∑
n=τm

s

cin,m




≥ lim inf
N→∞

Eφ
∗

[
1
MN

MN∑
m=1

(V ∗(o)− δ)

]
= V ∗(o)− δ.
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