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Abstract— How to efficiently collect sensing data from all
sensor nodes is critical to the performance of wireless sensor
networks. In this paper, we aim to understand the theoretical
limitations of data collection in terms of possible and achievable
maximum capacity. Previously, the study of data collection
capacity [1]-[6] has only concentrated on large-scale random
networks. However, in most of practical sensor applications, the
sensor network is not deployed uniformly and the number of
sensors may not be as huge as in theory. Therefore, it is necessary
to study the capacity of data collection in an arbitrary network. In
this paper, we derive the upper and constructive lower bounds for
data collection capacity in arbitrary networks. The proposed data
collection method can lead to order-optimal performance for any
arbitrary sensor networks. We also examine the design of data
collection under a general graph model and discuss performance
implications.

I. INTRODUCTION

A wireless sensor network consists of a set of sensor
devices which spread over a geographical area. The ultimate
goal of sensor networks is often to collect the sensing data
from all sensors to a sink node and then perform further
analysis at the sink node. In this paper, we study some
fundamental capacity problems arising from data collection
scenario in wireless sensor networks. We consider a wireless
sensor network where n sensors are arbitrarily deployed in a
finite geographical region. Each sensor measures independent
field values at regular time intervals and sends these values
to a sink node. The union of all sensing values from n
sensors at a particular time is called snapshot. The task of
data collection is to deliver these snapshots to a single sink.
Due to spatial separation, several sensors can successfully
transmit at the same time if these transmissions do not cause
any destructive wireless interferences. As in the literature, the
classical protocol interference model is used in our analysis,
while all analysis results can also be extended to physical
interference model by applying the technique introduced in
[7]. We also assume that a successful transmission over a link
has a fixed data-rate W bit/second.

The performance of data collection in sensor networks can
be characterized by the rate at which sensing data can be
collected and transmitted to the sink node. In particular, the
theoretical measure that captures the limitations of collection
processing in sensor networks is capacity for the many-to-
one data collection, i.e., the maximum data rate at the sink
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to continuously receive the snapshot data from sensors. Data
collection capacity reflects how fast the sink can collect
sensing data from all sensors under existence of interference.
It is critical to understand the limitation of many-to-one infor-
mation flows and devise efficient data collection algorithms to
maximize the performance of wireless sensor networks.

Capacity limits of data collection in random wireless sensor
networks have been studied in the literature [1]-[6]. In [1], [2],
Duarte-Melo et al. first introduced the many-to-one transport
capacity in dense and random sensor networks under protocol
interference model. El Gamal [3] studied the capacity of
data collection subject to a total average transmitting power
constraint where a node can receive data from multiple source
nodes at a time. Barton and Rong [4] also investigated the
capacity of data collection under general physical layer models
(e.g. cooperative time reversal communication model) where
the data rate of individual link is not fixed as a constant
W but various depending on the transmitting powers and
transmitting distances of all simultaneous transmissions. Both
[3] and [4] adopted complex physical layer techniques, such
as antenna sharing, channel coding and cooperative beam-
forming, in their models. Liu et al. [5] recently studied the
capacity of a general some-to-some communication paradigm
under protocol interference model in random networks where
there are multiple randomly selected sources and destinations.
They derived the upper and constructive lower bounds for
such a problem. Chen et al. [6] studied the capacity of data
collection under protocol interference model with multiple
sinks. However, all the above research shares the common
assumption where large number of sensor nodes are either
located on a grid structure or randomly and uniformly dis-
tributed in a plane. Such assumption is useful for simplifying
the analysis and deriving nice theoretical limitations, but may
be invalid in many practical sensor applications. To our best
knowledge, our paper is the first one to study data collection
capacity for arbitrary networks.

In this paper, we focus on deriving capacity bounds of
data collection for arbitrary networks, where sensor nodes
are deployed in any distribution and can form any network
topology. We summarize our contributions as follows:

o For arbitrary sensor network under protocol interference
model, we propose a data collection method based on
Breadth First Search (BFS) tree. We prove that this
method can achieve collection capacity of ©(W') which
matches the theoretical upper bound.



« Since disk graph model is idealistic, we also consider a
more practical model: general graph model. In general
graph model, two nearby nodes may be unable to com-
municate due to various reasons such as barrier and path
fading. We first show that © (V) may not be achievable
for a general graph. Then we prove that BFS-based
method can still achieve capacity of ©(4X%) where A*
is a new interference parameter defined in Section IV.

The results above not only help us to understand the theo-
retical limitations of data collection in sensor networks, but
also provide practical and efficient data collection methods
(including how to construct data collection structure and how
to schedule data collection) to achieve near-optimal capacity
(within constant times of the optimal). Even though we are
focusing on arbitrary networks, all of our solutions can be
applied to random networks since any random network is just
a special case of arbitrary networks.

II. NETWORK MODELS AND COLLECTION CAPACITY
A. Basic Network Models

In this paper, we focus on the capacity bound of data
collection in arbitrary wireless sensor networks. For simplicity,
we start with a set of simple and yet general enough models
that are widely used in the community.

We consider an arbitrary wireless network with n sensor
nodes v1,vs, - - - , v, and a single sink vy. These n sensors are
arbitrarily distributed in a field. At regular time intervals, each
sensor measures the field value at its position and transmits the
value to the sink. We adopt a fixed data-rate channel model
where each wireless node can transmit at W bits/second over
a common wireless channel. We also assume that all packets
have unit size b bits. The time is divided into time slots with
t = b/W seconds. Thus, only one packet can be transmitted in
a time slot between two neighboring nodes. TDMA scheduling
is used at MAC layer.

Under the fixed data-rate channel model, we assume that
every node has a fixed transmission power P. Thus, a fixed
transmission range 7 can be defined such that a node v; can
successfully receive the signal sent by node v; only if ||v; —
vj|| < r. Here, ||v; —v;]| is the Euclidean distance between v;
and v;. We call this model disk graph model. We can further
define a communication graph G = (V, E) where V is the set
of all nodes (including the sink) and E is the set of all possible
communication links. In this paper, we always assume graph
G is connected.

Due to spatial separation, several sensors can successfully
transmit at the same time if their transmissions do not cause
any destructive wireless interferences. As in the literature, we
model the interference using protocol interference model. All
nodes have a uniform interference range R. When node v;
transmits to node v;, node v; can receive the signal success-
fully if no node within a distance R from v; is transmitting
simultaneously. Here, for simplicity, we assume that % is a
constant « which is larger than 1. Let 6(v;) be the number of
nodes in v;’s interference range (including v; itself) and A be
the maximum value of d(v;) for all nodes v;, i =0,--- ,n.

B. Capacity of Data Collection

We now formally define delay and capacity of data col-
lection in wireless sensor networks. Recall that each sensor
generates a field value with b bits at regular time intervals, and
tries to transport it to the sink. We call the union of all values
from all n sensors at particular sampling time a snapshot of
the sensing data. Then the goal of data collection is to collect
these snapshots from all sensors. It is clear that the sink prefer
to get each snapshot as quickly as possible. In this paper, we
assume that there is no correlation among all sensing values
and no network coding or aggregation technique is used during
the data collection.

Definition 1: The delay of data collection D is the time
used by the sink to successfully receive a snapshot, i.e., the
time needed between completely receiving one snapshot and
completely receiving the next snapshot at the sink.

Definition 2: The capacity of data collection C is the ratio
between the size of data in one snapshot and the time to receive
such a snapshot (i.e., ”—b) at the sink.

Thus, the capacity C' is the maximum data rate at the sink
to continuously receive the snapshot data from sensors. Here,
we require the sink to receive the complete snapshot from all
sensors (i.e., data from all sensors need to be delivered). Notice
that data transport can be pipelined in the sense that further
snapshots may begin to transport before the sinks receiving
prior snapshots. In this paper, we focus on capacity analysis
of data collection in an arbitrary sensor network.

III. COLLECTION CAPACITY UNDER DISK GRAPH MODEL

Upper Bound of Collection Capacity: It has been proved
that the upper bound of capacity of data collection for random
networks is W [1], [2]. It is obviously that this upper bound
also holds for any arbitrary network. The sink vy cannot
receive at rate faster than W since W is the fixed transmission
rate of individual link. Therefore, we are interested in design
of data collection algorithm to achieve capacity in the same
order of the upper bound, i.e. ©(W).

We now propose a BFS-based data collection method and
demonstrate that it can achieve the capacity of ©(W') under
our network model. Our data collection method includes
two steps: data collection tree formation and data collection
schedulling.

A. Data Collection Tree - BFS Tree

The data collection tree used by our method is a classical
Breadth First Search (BFS) tree rooted at the sink vg. The
time complexity to construct such a BFS tree is O(|V|+|E|).
Let T be the BFS tree and v}, --- ,v! be all leaves in 7. For
each leaf vé, there is a path P; from itself to the root vgy. Let
6 (v;) be the number of nodes on path P; which are inside
the interference range of v; (including v; itself). Assume the
maximum interference A; on each path P; is max{6¥(v;)}
for all v; € P;. Hereafter, we call A; path interference of path
P;. Then we can prove that 7" has a nice property that the path
interference of each branch is bounded by a constant.



Fig. 1. Proof of Lemma 1: on a path P; in BFS 7', the interference nodes
for a node v; is bounded by a constant.

Lemma 1: Given a BFS tree T under the protocol interfer-
ence model, the maximum interference A; on each path P; is
bounded by a constant 8a?, i.e., A; < 8a2.

Proof: 'We prove by contradiction with a simple area
argument. Assume that there is a v; on P; whose 5 (v;) >
8a?2. In other words, more than 8a2 nodes on P; are located
in the interference region of v;. Since the area of interference
region is wR2, we consider the number of interference nodes
inside a small disk with radius 7. See Figure 1 for illustration.
The number of such small disks is at most :(—?; = 40?2

inside wR2. By the Pigeonhole principle, there must be more
than % = 2 nodes inside a single small disk with radius
5. In other words, three nodes v,, v, and v. on the path P;
are connected to each other as shown in Figure 1. This is a
contradiction with the construction of BFS tree, since one of
such nodes will be visited on other path (i.e. on a single path
a node can only connected to two other nodes (its parent and
child on the path)). As shown in Figure 1, if v, and v, are
connected in G, then v, should be visited on the other path

instead of P;. This finishes our proof. |
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Fig. 2. Scheduling on a path: after A; slots the sink gets one data.

B. Scheduling Algorithm

We now illustrate how to collect one snapshot from all
sensors. Given the collection tree 7', our scheduling algorithm
basically collects data from each path P; in T one by one.

First, we explain how to schedule collection on a single
path. For a given path P;, we can use A; slots to collect one
data in the snapshot at the sink. See Figure 2 for illustration.
In this figure, we assume that R = r and only adjacent nodes
interfere with each other. Thus A; = 3. Then we color the
path using green, red, and blue as in Figure 2(a). Every node

on the path has unit data to transfer. Green, red and blue links
are active in the first slot, the second slot and the third slot,
respectively. After three slots (Figure 2(d)), the leaf node has
no data in this snapshot and the sink gets one data from its
child. Therefore, to receive all data on the path, at most A; x
|P;| time slots are needed. We call this scheduling method
Path Scheduling.

Now we describe our scheduling algorithm on the collection
tree 7. Remember 7" has m leaves which define m pathes from
P, to P,,. Our algorithm collects data from path P, to P, in
order. We define that i-th branch B; is the part of P; from vﬁ
to the intersection node with P, for ¢ = [1,m — 1] and m-th
branch B,, = P,,. For example, in Figure 3(b), there are four
branches in 7T: B; is from vi to v,, Ba is from vé to vy, B3
is from vé to vp, and By is from vfl to vyp. Remember that the
union of all branches is the whole tree 7'. Algorithm 1 shows
the detailed scheduling algorithm.

Algorithm 1 Data Collection Scheduling on BFS
Input: BES tree T

1: for each snapshot do
22 fort=1tomdo

3: Collect data on path P;. All nodes on P; transmit
data towards the sink vy using Path Scheduling.
4: The collection terminates when nodes on branch B;

do not have data for this snapshot. Notice that the
total slots used are at most A; - | B;|, where |B;]| is
the hop length of B;.

Figure 3(c)-(j) give an example of scheduling on 7. In the
first step (Figure 3(c)), all nodes on P; participate in the
transmission using the scheduling method for a single path
(every A; slots, sink vg receives one data). Such transmission
stops until there is no data in this snapshot on branch B;, as
shown in Figure 3(d). Then in the second step data on path
P; is transmitted. This procedure repeats until all data in this
snapshot reach vyg.

C. Capacity Analysis

We now analyze the achievable capacity of our data collec-
tion method by counting how many time slots the sink needs
to receive all data in one snapshot.

Theorem 2: The BFS-based data collection method can
achieve data collection capacity of ©(TV) at the sink.

Proof: In Algorithm 1, the sink collects data from all m
pathes in 7. In each step (Lines 3-4), data are transferred on
path P; and it takes at most A; - | B;| time slots. Recall that
Path Scheduling needs at most A; - k time slots to collect k
packets from path P;. Therefore, the total number of time slots
needed for Algorithm 1, denoted by 7, is at most Zgl A; -
| B;|. Since the union of all branches is the whole tree T, i.e.,
iy |Bil = m. Thus, 7 < 377, AyBi| < 3007, A|Bz“ <
An. Here A = max{Ay,---,A,,}. Then, the delay of data
collection D = 7t < Ant. The capacity C' = %7 > AanZt = %.
From Lemma 1, we know that A is bounded by a constant.
Therefore, the data collection capacity is © (). |
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Recall that the upper bound of data collection capacity is W,
thus our data collection algorithm is order-optimal. Conse-
quently, we have the following theorem.

Theorem 3: Under protocol interference model and disk
graph model, data collection capacity for arbitrary wireless
sensor networks is © (V).

IV. COLLECTION CAPACITY UNDER GENERAL GRAPH

So far, we assume that the communication graph is a disk
graph where two nodes can communicate if and only if their
distance is less than or equal to transmission range r. However,
a disk graph model is idealistic since in practice two nearby
nodes may be unable to communicate due to various reasons
such as barrier and path fading. Therefore, in this section, we
consider a new general graph model G = (V, E) where V is
the set of sensors and F is the set of possible communication
links. Every sensor still has a fixed transmission range r such
that the necessary condition for v; to receive correctly the
signal from v; is [|v; — v;|| < r. Notice that [|v; — v;]| < 7
is not the sufficient condition for an edge v;v; € E. Some
links do not belong to G because of physical barriers or the
selection of routing protocols. Thus, G is a subgraph of a disk
graph. Under this model, the network topology G can still be
any general graph (for example, setting » = oo and putting a
barrier between any two nodes v; and v; if v;v; ¢ Q).

A. Data Collection under General Graph Model

In the new general graph model, the capacity of data
collection could be % in the worst-case. We consider a simple
straight-line network topology with n sensors as shown in
Figure 4(a). Assume that the sink vy is located at the end
of the network and the interference range is large enough
to cover every node in the network. Since transmission on
one link will interfere with all other nodes, the only possible
scheduling is transferring data along the straight-line via all
links. The total time slots needed are n(n + 1)/2, thus the
capacity is at most ©('Y). Notice that in this example, the
maximum interference A of graph G is n. It seems the upper
bound of data collection capacity could be %. We now show
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Illustrations of our scheduling on the data collection tree 7.

an example whose capacity can be much larger than %. Again

we assume all n nodes with the sink interfering with each

other. The network topology is a star with the sink vy in center,

as shown in Figure 4(b). Clearly, a scheduling which lets every

node transfer data in order can lead to a capacity W which is
W _ W

much larger than 1 = --.

(a) Straight-line Topology (b) Star Topology

Fig. 4. The optimum of BFS-based method under two extreme cases.

Fortunately, the BFS-based data collection algorithm still
works well under general graph model. It is easy to see that the
capacity is still %. Here, A is the maximum path interference
among all pathes. However, in general graph model we can
not bound A by a constant any more, and it could be O(1) or
O(n). Thus, there is a gap between our lower bound of data
collection % and the natural upper bound W. Considering
both examples shown in Figure 4, the BFS-based method
matches their tight upper bounds % and W. For the star
topology, even though the sink has the maximal interference
A = n, each individual path has the path interference A; =1
which leads to capacity of ? = W. For the straight-line
topology, the path interference of the single path A; = n,
thus the capacity is %

B. Tighter Lower Bound

Actually % is not a tight lower bound by BFS-based

method. Now we are ready to show a tighter lower bound by
reconsidering how to do the Path Scheduling. In Section III we
claimed that the path scheduling for a path P; can be done in
A; - |P;| time slots. However, we can perform path scheduling
in the following way to save more slots. Assume that path P; =

Vo, V1, V2, , V| py)- Let 5;? = maX{(SPi(Ul)’m« 75Pi(vk)}7
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Fig. 5. Illustration of the advantage of a new path scheduling.

ie., 5 is the maximum interference among first k nodes v; to
Vi in path P;. In the first step, using 5‘ | slots, every node on
the path transfers its data to its parent. After the first step, the
leaf v) p,| already finishes its task in this round and has no data
from current snapshot. In the second step, using 6‘1?,1‘71 slots,
the current snapshot data will move one more level up along
the path in the BFS tree. Repeat these steps until all data along
this path reach the sink. It is easy to show that the total number
of time slots used by the above procedure is Z‘P il §P Since
ol < A, lel 6" < A; - |P,|. Figure 5 shows an example
where Z |7l L 647 is much smaller than A;-|P;|. Again we have
70 SeNnsors and the sink distributed on a line P as shown in the
figure. Assume that R = r. On the left side, there are logn
nodes close to each other, thus their d(v;) = logn except for
d(Un—tognt+1) = logn + 1. On the right side, every node has
d(v;) = 3. Thus, A =logn+ 1 and A - |P| = ©(nlogn).
In addition, 6f = logn + 1 for k = n —logn + 1,--+ ,n
and 6F =3 for k=3, -- ,n — logn, 55 = 2, and 6{3 =1.
Therefore, 32171, 62 = (logn+1) logn+3(n —logn) —3 =
@( ). It is obvious that Z‘Pl §F = ©(n) is smaller than
A -|P| = O(nlogn) in order.

Based on the new path scheduling analysis, we now derive
a tighter lower bound for our BFS-based method. Recall that
our method transfers data based on branches in BFS tree 7.
In T, there are m pathes P; and m branches B; as shown in
Figure 3(a) and 3(b). Then the total number of time slots used
by Algorithm 1 with new path scheduling is at most

| P |

> o> o

i=1 k=|P;|—|B;|+1

It is clear that this number is much smaller than ) ;" | A;-|B;|
from previous analysis. Notice that for path P; our algorithm
(Line 3-4 in Algorithm 1) will terminate the transmission until
the branch B; does not have data for current snapshot and
switch to next path P, ;. Thus, the index k is only from |F;|
to |P;| — |B;| + 1. Therefore, the capacity achieved by our
algorithm is at least
w

m 1P P; °
PIUED DN |P;|—|B; 141 9%

n

k= \P\—\B 141 %"

Let A* = Wthh can be derived given
the BFS tree. Here A* is a kind of weighted-average of the
maximum interference among pathes P; and branches B; in
the BFS tree. We then have the following relationship:

n>A>A>A">1,

among the maximum interference A in the whole graph,
the maximum interference A in the pathes/braches of the
BFS tree, and the “average” maximum interference A* in
the pathes/branches of the BFS tree. These three interference
numbers can be different from each other in order. Even
though ~ is a tighter lower bound for data collection, there
is still a gap between it and the upper bound W. Thus, we
leave finding a tighter bound to close the gap as one of our
future work.

Theorem 4: Under protocol interference model and general
graph model, data collection capacity for arbitrary sensor
networks is at least XV* and at most W.

V. CONCLUSION

In this paper, we study the theoretical limitations of data
collection in terms of capacity for arbitrary wireless sensor
networks. We first propose an efficient data collection method
to achieve capacity of ©(W), which is order-optimal under
protocol interference model. However, when the underlying
network model is a general graph, we show that ©(W) may
not be achievable. We prove that BFS-based method can still
achieve capacity of ©(4%) for general graphs. All of our
methods can also achleve these results for random networks.

There are still several open problems left as our future
work. (1) We would like to close the gap of upper and lower
bounds of data collection capacity for general graphs. (2)
Even though the capacity of data aggregation for arbitrary
networks has been studied in [8], they only consider the
worst case capacity. It is interesting to study aggregation
capacity for any arbitrary network. (3) Here we focus on
achieving order-optimal capacity (i.e., constant approximation
for minimizing delay and maximizing capacity), but how to
achieve optimal (or near-optimal) capacity (i.e., reduce the
approximation ratio) is a more challenging task. We leave it
as one of our future work. Recall that some of the problems
(e.g. minimum delay data aggregation [9]) are NP-hard.
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