
Managing A Cloud for Multi-agent Systems on
Ad-hoc Networks

Subhajit Sidhanta
Department of Computer Science
Louisiana State University

Baton Rouge, Louisiana 70802
Email: ssidha1@tigers.lsu.edu

Supratik Mukhopadhyay
Department of Computer Science
Louisiana State University

Baton Rouge, Louisiana 70802
Email: supratik@csc.lsu.edu

Abstract—We present a novel execution environment for multi-
agent systems building on concepts from cloud computing and
peer-to-peer networks. The novel environment can provide the
computing power of a cloud for multi-agent systems in in-
termittently connected networks. We present the design and
implementation of a prototype operating system for managing
the environment. The operating system provides the user with a
consistent view of a single machine, a single file system, and
a unified programming model while providing elasticity and
availability.

I. INTRODUCTION
Multi-agent systems are software frameworks where au-

tonomous intelligent agents interact with each other to achieve
a computational goal. An intelligent agent is a program that re-
ceives percept streams from the environment and uses reason-
ing to deduce reactions to them that are actuated through actu-
ators. Multi-agent systems have a wide range of applications
in video and text analytics [7], robotic control systems [2],
etc. Despite the fact that they often need to run computation-
intensive algorithms to carry out complex reasoning, real time
response is crucial in many mission-critical scenarios. Hence,
the availability of a high performance computing infrastructure
is essential for the success of such systems. Existing high
performance computing infrastructures such as clusters [4]
or cloud data centers [10] may not be accessible in remote
areas with intermittent network connectivity such as in military
battlefields, disaster scenarios, etc., where powerful expert
systems are needed for analytics, resource scheduling, and
other applications.

II. DESIGN PRINCIPLES
This section describes the design philosophy behind the

APMAC architecture and the PPDOS operating system.

A. Design of APMAC
APMAC’s design is motivated by a trade off between the

non-functional requirements of a multi-agent system listed
below: [1].

• Autonomy: A computation running on APMAC consists
of a collection of agents running on the nodes of a
network which communicate with each other to perform a
set of tasks. Nodes can join and leave the network at any
time. The actions which the agents perform are based on

their collective knowledge of the environment as obtained
through a distributed strongly consistent shared state.
The shared consistent state can be maintained through
a distributed key-value store that implements transac-
tions. Agents interact with the distributed shared state
through the publish-subscribe pattern. An agent embodies
a function in mathematical sense whose inputs are the
monitored variables, i.e., environment variables that the
agent subscribes to and whose outputs are recorded into
the controlled variables, i.e., environment variables that
it publishes. In addition, the agent body uses internal
variables to store intermediate results. The local state of
an agent is an assignment of values to all the monitored,
internal, and controlled variables. The deployment and
execution of agents is managed by the PPDOS operating
system. Users interact with APMAC through the PPDOS
shell.

• Reactivity: The agents react in response to inputs from
the environment in a timely fashion. The reactions can be
published into the environment or actuated through actu-
ators. Our results show low latency between a stimulus
and its response. The local state of an agent changes in
response to changes in the environment

• Deliberativity: The function embodied in an agent can
be described by a set of production rules that allow
reasoning about changes in the environment. The rules
can be provided by a domain expert or can be learnt
from data.

• Interaction: APMAC enables asynchronous communica-
tion of each agent with its environment as well as with
other agents.

Apart from these features APMAC agents can be mobile,
i.e., agents can migrate from one node to another in response
to changes in the environment.

B. Design of PPDOS

Multiple virtual machines can be tied to a single device.
The microkernel of PPDOS itself is a collection of agents
that are replicated on each node. PPDOS provide the user
with the view of a single machine with a single file system, a
single programming model, and a Unix-like interface. Agents

978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.51

996978-0-7695-4755-8/12 $26.00 © 2012 IEEE

DOI 10.1109/CLOUD.2012.51

996

IEEE 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING YEAR 2012



(both user and microkernel) communicate peer-to-peer asyn-
chronously through a distributed key-value store (similar to a
Linda’s tuple-space [6]) which supports transactions. PPDOS’s
group management module maintains a distributed strongly
consistent state of the system in the presence of joining/leaving
of nodes. PPDOS allows hot-swapping of one agent with
another at runtime without any disruption of service. Since
PPDOS microkernel is a collection of agents, we can dynam-
ically extend/modify the functionality of the system without
disrupting its functioning. An agent can migrate from one node
to another at runtime while preserving its local state. PPDOS
allows interaction with the native operating systems of the
nodes. Users interact with PPDOS through a command shell
deploying tasks and accessing resources. Operating system
services like file services, deploying and unloading agents,
time, etc., are provided by a set of agents. The microkernel
agents ensure that a snapshot of the state of the system is
always stored in distributed key-value store.

III. IMPLEMENTATION
A. Agent Model
An agent running on APMAC has a predefined structure

shown below (in Java).
An agent is deterministic, i.e., it embodies a function in the

mathematical sense, and reactive, i.e., its state changes only in
response to “events” triggered by the environment. The local
variables of an agent are partitioned into monitored variables,
i.e., variables through which it receives stimulus from the
environment (indicated by invoking the SUBSCRIBE method
in the constructor), internal variables that it uses to store
intermediate values, and controlled variables that record its
response to the stimulus and are published to the environment
(indicated by registering to the operating system through
invocation of the REGISTER method). The update methods
consist of rules that allow the agent to compute responses to
environmental stimuli by reasoning about it and are described
by guarded commands [3] that are triggered by events in the
environment.

B. Distributed Key-Value Store
For a distributed key-value store, we use Scalaris [11]. It is

an open source distributed key-value store that supports trans-
actions. Although, by default, Scalaris provides in-memory
storage, through Tokyo-Cabinet [5] it can be configured to use
persistent local hard disks. It implements the Paxos algorithm
[9] to replicate providing ACID properties with strong con-
sistency. It uses quorum algorithms to recover from random
crashes and node restarts and can run uninterrupted even under
intermittent node failures as long as a majority of the nodes
in the network are available.

C. PPDOS Implementation: Multi-agent Microkernel
We have implemented PPDOS in Java. The PPDOS mi-

crokernel consists of a set of “system” agents that provides
operating systems services and manage the deployment and
execution of user agents. The PPDOS microkernel and the

deployed user agents communicate asynchronously through
the Scalaris distributed key-value store. Microkernel modules
are collections of system agents that together provide a certain
type of service. The microkernel modules based on their
functionality can be categorized into basic services, resource
management services, and agent execution and deployment
services. We provide the algorithms implemented by the
operating systems services below; for lack of space we omit
the correctness proofs. The basic services are the core services
provided by the microkernel that are invoked by the user agents
to achieve their computation and communication goals. The
Group management services are the services of the microker-
nel that maintain consistency in the event of nodes joining
and leaving the network. A group is a dynamic collection of
nodes. We have the Agent Execution Management Services
that provide functions like loading,unloading and migrating
agents from one node to another.

IV. CONCLUSIONS
We have presented the architecture and implementation of

APMAC, a novel execution environment for running multi-
agent systems on ad-hoc networks and an operating system
PPDOS for managing it. PPDOS provides a single machine,
strongly consistent view of the infrastructure with a single file
system.

REFERENCES
[1] Carla T.L.L.Silva, Jaelson Castro, Patricia Azevedo Tedesco:Requirements

for Multi-agent Systems . WER 2003: 198-212
[2] D. Stavens, G. Hoffmann, and S. Thrun. Online speed adaptation using

supervised learning for high-speed, off-road autonomous driving. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), Hyderabad, India, 2007.

[3] Dijkstra, Edsger W. “EWD472: Guarded commands, non-determinacy and
formal. derivation of programs." (PDF). Retrieved February 29, 2012.

[4] Douglas Thain, Todd Tannenbaum, and Miron Livny, “Condor and the
Grid", in Fran Berman, Anthony J.G. Hey, Geoffrey Fox, editors, Grid
Computing: Making The Global Infrastructure a Reality, John Wiley,
2003. ISBN: 0-470-85319-0

[5] fallabs, [online] 2012, http://fallabs.com/tokyocabinet/ (Accessed: 28
February 2012)

[6] Gelernter, David. “Generative communication in Linda". ACM Transac-
tions on Programming Languages and Systems, volume 7, number 1,
January 1985.

[7] Harold Trease, Tim Carlson, Ryan Moony, Robert Farber, and Lynn
Trease. 2007. “Unstructured data analysis of streaming video using par-
allel, high-throughput algorithms". In Proceedings of the Ninth IASTED
International Conference on Signal and Image Processing (SIP ’07), Rui
J. P. de Figueiredo (Ed.). ACTA Press, Anaheim, CA, USA, 305-310.

[8] Hastings, W.K. (1970). “Monte Carlo Sampling Methods Using
Markov Chains and Their Applications". Biometrika 57 (1): 97Ű109.
doi:10.1093/biomet/57.1.97. JSTOR 2334940. Zbl 0219.65008.

[9] Lamport, Leslie (May 1998). "The Part-Time Parliament".
ACM Transactions on Computer Systems 16 (2): 133Ű169.
doi:10.1145/279227.279229. Retrieved 2012-03-02.

[10] Pepitone Julianne, “The NIST definitionn of Cloud Computing,"
(NIST), [online] 2011, http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf (Accessed: 16 February 2012)

[11] Thorsten Schütt , Florian Schintke , Alexander Reinefeld, Scalaris:
reliable transactional p2p key/value store, Proceedings of the 7th ACM
SIGPLAN workshop on ERLANG, September 27-27, 2008, Victoria, BC,
Canada [doi 10.1145/1411273.1411280]

[12] Vmware.com, [online] 2012, http://www.vmware.com/pdf/virtualization.
pdf (Accessed: 27 February 2012)

[13] Wikipedia, [online] 2012, http://en.wikipedia.org/wiki/Apache_Hadoop
(Accessed: 28 February 2012)

997997


